
Towards Self-Adaptive Anomaly
Detection Sensors

Gabriela F. Ciocarlie

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2009

c©2009

Gabriela F. Ciocarlie

All Rights Reserved

ABSTRACT

Towards Self-Adaptive Anomaly
Detection Sensors

Gabriela F. Ciocarlie

Spurred by the ever growing availability of online services and resources, threat models

are constantly evolving. As a result, the same security techniques that were sufficient

a decade, or even a few years ago, can prove inadequate today. In particular, re-

cent advances in polymorphic attacks and the increasing volume of zero-day attacks

threaten to overwhelm signature-based defense mechanisms. As attackers are finding

new ways to gain access to networks and systems, so defense mechanisms must find

new ways to protect them.

Anomaly Detection (AD) sensors provided a breakthrough in the defense against

polymorphic and zero-day attacks by relying on models of normal behavior, rather

than signatures of malicious input. However, as AD-based approaches are increasingly

introduced as first-class defensive techniques, a number of open problems regarding

their deployment and maintenance remain. The efficacy of AD sensors depends heav-

ily on the quality of the data used to train them, and artificial or contrived training

data may not provide a realistic view of the deployment environment. Most realistic

data sets contain a number of attacks or anomalous events, their size making manual

removal of attack data infeasible. As a result, sensors trained on this data can miss

attacks and their variations. Another roadblock on the way to widespread adoption of

AD sensors is that their deployment and maintenance often require significant inter-

vention by a human expert, to manually optimize their performance and keep them

up-to-date with changes in the system.

In this thesis we attempt to address these challenges by introducing a set of meth-

ods for self-sanitizing, self-calibrating and self-updating AD sensors. Our overall goal

is to introduce a general framework for a class of AD sensors that can automatically

adapt to the system under protection, combining detection performance with ease of

deployment and operation.

We begin by extending the training phase for a class of content-based AD sensors

to include a novel sanitization phase that significantly improves the detection perfor-

mance of these sensors, in a manner agnostic to the underlying AD algorithm. This

phase generates multiple models conditioned on small slices of the training data. We

use these “micro-models” to produce provisional labels for each training input, and

we combine the micro-models in a voting scheme to determine which parts of the

training data may represent attacks. Our results suggest that this phase automati-

cally and significantly improves the quality of unlabeled training data by making it

as “attack-free” and “regular” as possible in the absence of absolute ground truth.

We then study the performance issues that stem from fully automating the AD

sensors’ calibration and long-term maintenance. Our goal is to remove the dependence

on human operators using an unlabeled, and thus potentially dirty, sample of incoming

traffic. To that end, we propose to enhance the training phase of AD sensors with

a self-calibration phase that can be employed in conjunction with the sanitization

technique resulting in a fully automated AD maintenance cycle. These techniques can

be applied in an online fashion to ensure that the resulting AD models reflect changes

in the system’s behavior which would otherwise render the sensor’s internal state

inconsistent. We verify the validity of our approach through a series of experiments

where we compare the manually obtained optimal parameters with the ones computed

from the self-calibration phase. Modeling traffic from two different sources, the fully

automated calibration shows performance comparable to that obtained using optimal

parameters. Finally, our adaptive models outperform the statically generated ones

retaining the gains in performance from the sanitization process over time.

We also introduce a set of specialized approaches for updating AD models, which

can be applied in the case where the AD sensor directly monitors individual system

components, such as the file system or database. If the sensor is informed of any

changes applied to these components, it can derive and apply a “model patch” which

translates the changes in terms of the AD behavioral model. We exemplify this

approach by showing how information from the file system and database can be used

to efficiently update models of non-dynamic HTTP requests. We also discuss the

effect of software patches on AD models, and investigate the feasibility of deriving

model updates directly from the contents of the patch.

The race between the attacker and defender for gaining access to the protected

system is one of skill, information and resources. The methods that we have discussed

so far improve the performance of local AD sensors through better data analysis and

training methods. However, a well-equipped attacker, armed with intimate informa-

tion on the protected system as well as extensive resources, can still attempt training

attacks that change the normal input patterns. To cope with this possibility, we ex-

tend our methodology to support sharing models of abnormal traffic among multiple

collaborating sites. We show that if one of the sites is able to capture an attack in

its abnormal model, all of the collaborators can benefit via model exchange. Our

framework makes this possible by defining a number of model operations which can

be implemented for a wide range of AD sensors.

Table of Contents

1 Introduction 1

1.1 Problem Statement . 3

1.2 Contributions . 4

1.2.1 Training Data Sanitization . 6

1.2.2 Automated Deployment of AD Sensors 7

1.2.3 AD Model Updates . 7

1.2.4 AD Models Exchange . 8

1.2.5 Feedback Systems . 8

1.3 Organization . 9

2 Related Work 12

2.1 Anomaly Detection . 12

2.1.1 Network-based Anomaly Detection 13

2.1.2 Host-based Anomaly Detection 14

2.2 Ensemble and Meta-learning Methods 16

2.3 Automated Calibration . 17

2.4 AD Model Update . 18

2.5 AD Model Exchange . 20

3 Training Dataset Sanitization 22

3.1 Data Sanitization Using Micro-Models 23

i

3.1.1 Micro-model Definition . 24

3.1.2 Sanitized and Abnormal Models 25

3.2 Sanitization Effect on AD Performance 27

3.2.1 AD Sensors . 28

3.2.2 Experimental Corpus . 29

3.2.3 Performance Results . 29

3.2.4 Analysis of Sanitization Parameters 33

3.3 Shadow Sensor Redirection . 37

3.4 Adversarial Scenarios . 42

3.4.1 Polymorphic Attacks . 43

3.4.2 Long Lasting Training Attacks 44

3.4.3 Mimicry Attacks . 46

3.5 Summary . 48

4 Automated Deployment of AD Sensors 49

4.1 Why Automated Deployment for AD Sensors? 49

4.1.1 Overview . 49

4.1.2 Contributions . 50

4.2 Self-Calibration using Time-based Partitions 51

4.2.1 Model Stability . 51

4.2.2 Analysis of Self-Calibration Parameters 53

4.3 Adaptive Training and Self-Sanitization 55

4.3.1 Voting Threshold Detection 55

4.3.2 Analysis of Self-Sanitization Parameters 58

4.4 Summary . 61

5 Model Updates 63

5.1 Self-Update AD Models . 66

5.1.1 Self-Update Model Evaluation 68

ii

5.1.2 Computational Performance Evaluation 72

5.1.3 Micro-Models Clustering . 74

5.2 Error-Response Feedback for Self-Update 75

5.2.1 Implementation Details . 78

5.2.2 Experimental Evaluation . 78

5.3 FS/DB-based AD Model Update . 81

5.3.1 Feasibility Study . 83

5.4 Post-Patch Model Update . 87

5.4.1 Feasibility Study . 90

5.5 Summary . 93

6 AD Model Exchange 95

6.1 Contributions . 96

6.2 AD Model Operations . 97

6.2.1 Model Aggregation . 98

6.2.2 Model Intersection . 99

6.2.3 Model Differencing . 100

6.2.4 Model Similarity . 101

6.3 Model Exchange for Cross-sanitization 102

6.3.1 Evaluation . 106

6.4 Model Exchange between Applications 108

6.4.1 Implementation and Evaluation 109

6.5 Summary . 111

7 Conclusion 114

7.1 Thesis Summary . 114

7.2 Result Summary . 117

7.3 Future Work . 118

iii

A Automated AD Sensors 120

A.1 Self-Calibration . 120

A.1.1 Processing a Packet . 120

A.1.2 Model Stability . 122

A.2 Self-Sanitization . 124

A.2.1 Process a Packet . 124

A.2.2 Voting Threshold . 128

Bibliography 129

iv

List of Figures

3.1 The training dataset sanitization architecture 27

3.2 Total content packet and attack packet distributions for www1 30

3.3 Performance for www1 for 3-hour granularity when using simple voting

and Anagram; the circled points are the optimal ones 34

3.4 Performance for www1 when using weighted voting and Anagram; the

circled points are the optimal ones 35

3.5 Performance for www for 3-hour granularity when using Anagram . . 36

3.6 Performance for lists for 3-hour granularity when using Anagram . . . 37

3.7 Granularity impact on the performance of the system for www1 when

using Anagram; the circled points are the optimal ones 38

3.8 Granularity impact on the performance of the system for www when

using Payl; the circled points are the optimal ones 39

3.9 Impact of the size of the training dataset for www1 40

3.10 Impact of the anomaly detector’s internal threshold for www1 when

using Anagram . 41

3.11 The shadow sensor architecture. The sanitized model is produced as

shown in figure 3.1 . 42

4.1 Time granularity detection(|tw| = 600s): a) first 10 micro-models (af-

ter each model, L is reset); b) zoom on the first model 53

4.2 Automatically determined time granularity 54

v

4.3 Impact of the voting threshold over the number of packets deemed as

normal for different time granularities 56

4.4 Determining the best voting threshold for www1 58

4.5 Determining the best voting threshold for lists 59

4.6 Model performance comparison for www1: automated vs.empirical . . 60

4.7 Model performance comparison for lists: automated vs.empirical . . . 61

5.1 AD model update architecture . 65

5.2 Online learning aging the oldest micro-model 67

5.3 Automatically determined voting threshold for www1 and lists 69

5.4 Alert rate for www1: both binary and ascii packets 70

5.5 Alert rate for www1: ascii packets . 71

5.6 Concept drift detection for www1 - alert rate for both binary and ascii

packets. Vertical line marks the boundary between new and old traffic 72

5.7 Concept drift detection for www1 - alert rate for ascii packets. Vertical

line marks the boundary between new and old traffic 73

5.8 Number of ASCII alerts per hour for www1. The vertical line marks

the boundary between new and old traffic 74

5.9 Clustering the micro-models . 75

5.10 Examples of error pages: (a) HTTP server error page customized for

this application; (b) application-specific error page 77

5.11 Percentage of error responses out of total number of responses for 24

hours on www1 . 79

5.12 Automatically determined time granularity with and without error fil-

tering for www1 . 80

5.13 Automatically determined voting threshold with and without error fil-

tering for www1 . 81

5.14 Front-end and back-end correlation for web server model update . . . 82

vi

5.15 Time to train an AD sensor for different training data set size. For the

case of Anagram+sanitization, we present the initial effort of building

the first batch of micro-models and the sanitized model 86

5.16 Time to train our multi-granular model. We have n-gram models for

the html and htm files and md5 models for the rest of the static files. 87

5.17 Histogram of percentage of unique grams out of the total number of

grams in the files . 88

6.1 Cross-sanitization architecture. The local sanitized and abnormal mod-

els are produced as shown in figure 3.1. In the cross-sanitization the

difference operation is applied between the local sanitized model and

the remote abnormal model. 104

vii

List of Tables

3.1 AD sensors comparison . 31

3.2 Signal-to-noise ratio TP/FP: higher values mean better results . . . 31

3.3 Latency for different anomaly detectors 43

3.4 Long lasting training attacks . 45

4.1 Empirically vs. automatically determined parameters 62

5.1 Static model vs. dynamic models alert rate 70

5.2 Computational performance for the online automated sanitization for

www1 . 73

5.3 Error response filtering vs. no error response filtering 80

5.4 Example of the inotify-tool use to capture the changes in the current

director. The file database changes.txt is modified while inotifywait is

running. inotifywait outputs the changes on the file system. 84

5.5 Example of a trigger definition. MySQL trigger definition for an insert

event on a table info. First a mirrored table is created adding a state

flag to it as well. When an insert event occurs the mirrored table is

also populated with the inserted elements and the flag is set accordingly. 85

5.6 Time and space constraints for building multi-granular models 86

viii

5.7 Survey of patches. We list the vulnerable version of an application,

the size of a patch in lines (including comments), and the changes in

data and control flow introduced by the patch, as listed above. The

magnitude of the difference between the changes and the application’s

total size supports the notion that patches introduce relatively confined

model updates. 91

5.8 Control flow changes introduced by patches 92

5.9 Data flow changes introduced by patches 92

6.1 Indirect Model Aggregation. Taggr contains all the data points that were

deemed normal by either of the models. 99

6.2 Indirect Model Intersection. Tint contains all the data points that were

deemed normal by both models. 100

6.3 Indirect model differencing.Tdiff contains all the data points deemed

normal by M1 and abnormal by M2 101

6.4 Indirect model similarity. sim1,2 counts how many times the two mod-

els agree. This metric can be normalized by defining the percentage of

agreements out of the total number of tested data points. 102

6.5 Performance when the sanitized model is poisoned and after it is cross-

sanitized when using direct/indirect model differencing 107

6.6 Size of the sanitized model when poisoned and after cross-sanitization

when using direct/indirect model differencing 108

6.7 Time to cross-sanitize for direct and indirect model operations 108

ix

6.8 Manhattan distance within and between models. The diagonal (shown

in italics) displays the average distance between each trace and the

behavior profile derived from each trace of that program. All other

entries display the distance between the execution models for each

program. We omit the lower entries because the table is symmetric.

Note the difference between gzip and gunzip as well as the similarity

of gzip to itself. 110

x

Acknowledgments

xi

Dedication text

xii

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

In recent years, network attacks such as flash crowds, denial-of-service attacks, port

scans and the spreading of worms and botnets have evolved into a significant threat

for large-scale networks. This problem is compounded by the fact that, as current

research indicates, signature–based network intrusion detection systems, traditionally

used by many anti-virus solutions, are quickly becoming ineffective at identifying

malicious traffic [72; 12; 93]. In particular, Song et al. [93] demonstrate the relative

ease with which polymorphic attack engines can overwhelm signature–based detection

methods.

Modeling normal behavior or content represents one of a small set of promising

alternatives that have been proposed in response to the threat of zero-day attacks.

This approach is defined as anomaly detection (AD), and it implies the construction of

learning-based models that characterize the normal behavior of entities (i.e. system,

user, etc.). We find this argument reasonable, especially since application developers

do not operate in an adversarial way: they do not purposefully allow their software to

accept widely differing sets of strings. In short, relying on anomaly detection sensors

to discover 0-day attacks has become a necessity rather than an option.

Anomaly sensors have wide applicability, ranging from systems that classify net-

work traffic content [49; 109; 7; 108; 94] to those that focus on sequences of system calls

CHAPTER 1. INTRODUCTION 2

[92; 106; 24; 70]. Anomaly detection sensors also employ different learning methods:

supervised learning techniques (e.g. [94]) which use labeled instances as training data

in order to build the normality model that characterizes the behavior of a system, and

unsupervised learning techniques (e.g. [108]) that aim to build normality models with-

out requiring labeled data. However, anomaly–based approaches are not perfect [34;

25; 107]. One of the most commonly cited difficulties is that their effective applica-

tion requires highly accurate modeling of normal traffic; despite the best efforts of the

research community, this process remains an open problem. For example, Taylor and

Gates [34] point to the problem of polluted or unclean training data sets as a key

roadblock to the construction of effective AD sensors. Specifically, “ground truth” for

large, realistic data sets is extremely hard to determine, rendering supervised learning

techniques difficult to deploy and unsupervised techniques difficult to verify.

In a related problem, the intrusion detection community lacks a collection of sig-

nificant, real-world data sets to test and validate new intrusion detection algorithms.

Although an effort to assemble such a collection was made almost a decade ago [54],

the resulting data set was flawed in a number of ways [64], and there is a growing

consensus that future experimental results based on this data set should be ignored.

The community, however, is left without any acceptable replacement. As a result,

researchers and customers cannot validate the work of other researchers or vendors,

especially since placing real, large data sets into wide circulation may reveal sensi-

tive information belonging to the organization kind enough to donate the data. The

next best solution involves every organization maintaining a private extensive data

collection. Laying aside the challenges involved in addressing the privacy concerns of

individuals within the organization, the technical challenge of keeping this data set

pristine is currently an open problem.

Ideally, an anomaly detector should achieve 100% detection accuracy, i.e., true

attacks are all identified, with 0% false positives, i.e. no normal data classified as

abnormal. Reaching this ideal is very hard due to a number of problems. First, the

CHAPTER 1. INTRODUCTION 3

generated model can under-fit the actual normal traffic. Under-fitting means that the

AD sensor is overly general: it will flag traffic as “normal” even if this traffic does

not belong to the true normal model. As a result, attackers have sufficient space to

disguise their exploit, thus increasing the amount of “false negatives” produced by the

sensor. Second, and equally as troubling, the model of normal traffic can over-fit the

training data: non-attack traffic that is not observed during training may be regarded

as anomalous. Over-fitting can generate an excessive amount of false alerts or “false

positives.” Third, as mentioned before, unsupervised AD systems lack a measure of

ground truth to compare to and verify against. The presence of an attack in the

training data “poisons” the normal model, thus rendering the AD system incapable

of detecting future or closely related instances of this attack. As a result, the AD

system may produce false negatives. This risk becomes a limiting factor of the size of

the training set [101]. Finally, even in the presence of ground truth, creating a single

model representing the normal behavior that includes all non-attack data can result

in under-fitting and over generalization.

1.1 Problem Statement

The current reliance on a human expert for providing training data is symptomatic of

the difficulties faced when deploying AD sensors in the real world. Depending on the

system and the type of input it receives, the operator might have to provide not only

recent training data sets, but also operational parameters depending on the charac-

teristics of expected traffic. Even assuming the initial training and calibration stages

are complete, the need for user supervision is hardly reduced. Real-world systems

typically exhibit dynamic changes in their behavior patterns, which can render the

AD model generated during deployment obsolete. An AD sensor that operates with

an outdated model may incorrectly classify new behavior as malicious or assert that

old, incorrect behavior is normal. Even though most work on anomaly detection ac-

CHAPTER 1. INTRODUCTION 4

knowledges the value of keeping a model updated, relatively little attention has been

paid to the general framework or the question of summarizing and communicating

these changes to a sensor in a manner enabling precise and automated model updates.

Other roadblocks on the way to the adoption of mainstream AD sensors are the

often cited aspects of high false positive rates and susceptibility to training attacks.

These are in fact related problems: a highly restrictive sensor typically generates a

high number of alerts, not all of them representing true attacks. However, a more

permissive sensor is also more susceptible to targeted training attacks, where the input

stream is manipulated by a dedicated attacker causing the sensor to eventually accept

malicious input as part of its normality model. This places an additional burden on

the human operator, who must find an optimal ”sweet spot” between these conflicting

desiderata. Such significant user input dependence can quickly render an AD sensor

unusable as a commercial off-the-shelf software. It seems that, apart from facilitating

the deployment and maintenance of AD sensors, additional mechanisms are needed

to insure their performance level in extreme adversarial environments.

The problem that we address in this thesis is the difficulty of building deployable,

hands-free AD systems that can adapt to the normal behavior patterns of the protected

host or application, derive their operational parameters from the intrinsic properties of

observed host behavior, monitor and adapt to legitimate changes in this behavior, and

successfully identify attacks without creating an inflation of false alerts. Throughout

these stages, our goal is to greatly reduce, or if possible eliminate altogether, the need

for human expert supervision.

1.2 Contributions

Our starting point for addressing the problems enumerated above is the following

key insight: by improving and automating the AD training phase and the quality of

the resulting normality model, we can improve the performance of AD sensors and

CHAPTER 1. INTRODUCTION 5

increase their robustness and deployability. In this thesis we present our results which

validate our hypothesis. We extend the training phase with a new sanitization phase

that uses our novel micro-models in a voting scheme to automatically eliminate at-

tacks and anomalies from training data. We then investigate new techniques which

can be applied in order to fully automate the training process and therefore the de-

ployment of AD sensors in the real world. As part of this approach, we identify the

false false positive problem and propose a shadow sensor architecture for consuming

false positives (FP) with an automated process rather than human attention. We also

develop methods for maintaining a high performance level for AD sensors when the

system under protection exhibits dynamic changes in its behavior. In addition, we

expand the notion of robust automated AD sensors to include collaboration between

multiple entities: hosts, devices and application. We also propose a novel distributed

architecture in order to cross-sanitize AD models and remove training attacks that

might otherwise bypass detectors with a strictly local view of normal behavior pat-

terns.

Our high level goal is to augment AD sensors, increasing their robustness while

automating their deployment and operation. It is important to note that our core

techniques make only the following assumptions about the inner workings of each AD

sensor:

• the sensor can be trained on a specified set of continuous data (i.e. a time-

delimited slice of a data stream);

• based on the training set, the sensor models the content of the stream, creating

a self-contained AD model;

• using the knowledge encapsulated in an AD model, the sensor can classify a

new data point as either normal or abnormal;

We note that this framework can be applied at either the network, host, service

or application levels. In our experimental evaluation, we address mostly network-

CHAPTER 1. INTRODUCTION 6

based sensors, but discuss the application of the same technique to host-based AD

sensors as well. Throughout our work, we refer to detection and false alert rates as

rates determined for a specific class of attacks that we observed in the tested data

sets since, as we noted before, discovering ground truth for any realistic data set is

currently infeasible.

In order to produce concrete, verifiable results we have implemented our methods

using a number of current sensors with the above properties. We treat these sensors

as black-box entities with well defined input and output interfaces according to our

framework. We strive for a general AD automation framework, applicable in a wide

range of environments using multiple AD solutions. We believe that this approach

can be instrumental in obtaining significant improvements in the detection of 0-day

attacks that can be implemented outside of the lab and in the real world.

1.2.1 Training Data Sanitization

The first technique that we have developed extends the AD training phase of an AD

sensor (without applying any changes to the AD algorithm itself) to successfully san-

itize training data, while achieving both a high rate of detection and a low rate

of false positives. Instead of using a normal model generated by a single AD sensor

trained on a single large set of data, we use multiple AD instances trained on small

data slices. Therefore, we produce multiple normal models, which we call micro-

models, by training AD instances on small, disjoint subsets of the original dataset.

Each of these micro-models represents a very localized view of the training data.

Armed with the micro-models, we are now in a position to assess the quality of our

training data and automatically detect and remove any attacks or abnormalities that

should not be considered part of the normal model. The threat model for this ap-

proach consists of persistent and/or targeted attacks, or other anomalies that persist

throughout the majority of the training set.

CHAPTER 1. INTRODUCTION 7

1.2.2 Automated Deployment of AD Sensors

Based on the proposed sanitization mechanism, we take additional steps towards

self-calibrating and self-sanitizing AD sensors. To that end, we propose a method

for automatically determining the operational parameters needed during the

deployment process based only on the intrinsic characteristics of the system under

protection. This novel self-calibration phase complements the data sanitization pro-

cess, and can enable true hands-free deployment for future AD sensors.

1.2.3 AD Model Updates

Another important aspect of anomaly detection models is that they have to reflect

the dynamic changes that are exhibited in the system’s behavior. We propose a

self-updating mechanism where an AD sensor can adapt to these changes by inte-

grating them into its normality models. We differentiate between two types of model

updates:

• progressive model update, for which the changes are caused by external factors

which cannot be controlled but where the effect of their actions can be observed;

• induced model update, for which the changes are caused by factors internal

to the protected system, such as code patches, changes to the file system or

modifications of the database.

In the case of progressive model updates, we propose to continuously update the

sanitized model to reflect the dynamic changes in the network or users’ behavior. We

achieve this goal by using an online learning approach combined with an aging mech-

anism for micro-models. Our results show significant performance gains compared to

the case of ”static”, or non-updating AD sensors. For induced model updates, we

investigate specialized approaches that depend on the monitored system components

(i.e. file system, database and software patches) that effect changes in the system

behavior. The ultimate goal is to automatically derive and apply a “model patch”

CHAPTER 1. INTRODUCTION 8

that describes the changes necessary to update an AD behavioral model based on

direct notifications provided by the three components listed above. In this thesis, we

explore the basic framework for this approach, and present a feasibility study that

aims to avoid extensive retraining and regeneration of an entire AD model when only

parts may have changed.

1.2.4 AD Models Exchange

We continue by extrapolating the problem of improving, automating and updating AD

models to include the notion of AD model exchange between collaborating systems.

AD models are essentially represented as first class objects that can be manipulated

and communicated among collaborators. The first application the we present uses our

AD sanitization methods in a novel, distributed strategy that leverages the location

diversity of collaborating sites. This approach, which we refer to as cross-sanitization,

implies the exchange of models of abnormal/malicious behavior between trusted peers

that can use this information to further improve their local normality models. Second,

we propose applying our AD model exchange framework at the application level, and

analyze the feasibility of a modeling technique for application behavior based on

return value distributions.

1.2.5 Feedback Systems

An important aspect of our work regards the efficiency of the resulting AD systems

in the real world. Many papers comment on anomaly detectors having too high

a false positive rate, thus making them less than ideal sensors. We believe that

the false positive rate is the wrong metric, as service throughput and latency are

more important. In this thesis, we describe the use of a heavily instrumented host-

based “shadow sensor” system akin to a honeypot that determines with very high

accuracy whether an event deemed an attack by the AD system is a false positive or

a real attack. Such systems perform substantially slower, usually orders of magnitude

CHAPTER 1. INTRODUCTION 9

slower, than the native, un-instrumented application [1]. Therefore, when taking

into account oracle constraints, we focus on producing a sensor that identifies a few

“suspect data” items which are subjected to further but time-expensive tests. This

way the false positives do not incur damage to the system under protection, and do

not flood an operational center with too many alarms. Instead, the shadow server

processes both true attacks and incorrectly classified packets to validate whether

a packet signifies a true attack. These packets are still processed by the intended

shadowed application and only cause an increased delay for network traffic incorrectly

deemed an attack.

Aside from using the shadow sensor feedback for coping with false alarms, we also

propose the use of a second type of feedback mechanism. We consider a filtering

approach that is applied before our sanitization mechanism. To that end, we label

as abnormal the input for which which the system under protection gives an error

response. This abnormal data is not considered for the sanitization process, but it is

directly encapsulated in the abnormal model, which in turn leads to a reduction in

the number of false alerts.

1.3 Organization

This thesis is organized as follows:

• Chapter 1 has provided the general background of our work, placing it in the

larger context of defending large scale network systems against 0-day attacks. It

has also established the motivation behind instrumenting deployable, hands-free

anomaly detection sensors.

• Chapter 2 discusses the relevant work in the field of anomaly detection systems.

It focuses mainly on AD algorithms for detecting evasions at different levels,

such as the network and host levels. It also presents existing work that aims to

address problems such as calibrating AD parameters or handling concept drift.

CHAPTER 1. INTRODUCTION 10

While this line of work has produced promising results, they are often limited

in scope: the problems mentioned above are addressed in separation, and often

related to a specific type of AD algorithm, without providing a complete and

general framework towards fully automated robust AD sensors.

• Chapter 3 lays the cornerstone of our work, by presenting the details of the

training dataset sanitization process, along with an extensive evaluation of the

technique. The results confirm that, by employing the sanitization technique,

the detection rate of the studied AD sensors is improved, while the false positive

rate is kept at a low level. This chapter also introduces the shadow sensor

architecture that addresses the false positive problem. Without inflicting a

significant computational overhead on the system under protection, the shadow

sensor determines with high accuracy when an alert is a false positive or a real

attack. Parts of this chapter were originally published in [15; 16].

• Chapter 4 introduces two automated deployment techniques, that complement

and extend our dataset sanitization method, without sacrificing any of its gen-

erality. This work shows how the operational parameters of an AD sensor can

adapt to the particular characteristics of the system under protection in order

to achieve a fully automated training phase. It also presents a comparison be-

tween an AD system operating with empirically determined optimal parameters

and one using our automated calibration methods. This work will appear in

the proceedings of a conference [17].

• Chapter 5 relates to the problem of AD model updates and proposes two dif-

ferent approaches. First, it demonstrates the use of an online learning technique

which is applied in conjunction with the sanitization process. Then it proposes

a specialized approach that depends on feedback from three integral parts of

the system under protection: file system, database and software patching. A

complete evaluation is conducted for the first approach, and feasibility stud-

CHAPTER 1. INTRODUCTION 11

ies along with a baseline evaluation for the file system and database feedback

systems are presented for the second. This chapter is based on initial results

published or under review in [14; 17; 56; 96]

• Chapter 6 details the use of AD model exchange in a collaborative security

setting. It presents two model exchange applications for which the security

protection mechanism leverages the location diversity of collaborating sites in

order to improve its performance. The first application, cross-sanitization,

exchanges abnormal/malicious models in order to increase the resistance of

local AD sensors to training attacks, while the second one uses application

profiles to study the feasibility of a return value based modeling technique.

This chapter also introduces a novel formalized set of AD model operations

that can be applied to a wide range of algorithms based on the collabora-

tive model exchange paradigm. Parts of this work originally appeared in [15;

58]

• Finally, the thesis concludes with chapter 7, which summarizes our contribu-

tions and also identifies some of the most important directions for future work.

CHAPTER 2. RELATED WORK 12

Chapter 2

Related Work

2.1 Anomaly Detection

Anomaly-based classification provides a powerful method for security mechanisms in

contrast to signature-based approaches which have been shown to be easily evaded.

First, Polygraph [72] analyzed the case of polymorphic worms, showing that substring

signatures are insufficient and proposing different types of signatures to detect such

attacks. Then, Crandall et al. [12] performed an evaluation that revealed the fact

that single continuous byte string signatures are not effective for content filtering,

and token-based byte string signatures composed of smaller substrings are only se-

mantically rich enough to be effective for content filtering if the vulnerability lies in

a part of a protocol that is not commonly used. Finally, Song et al. [93] presented

a quantitative analysis of the strengths and limitations of shellcode polymorphism

along with empirical evidence that showed that modeling the class of self-modifying

code is likely intractable by known methods, including both statistical constructs and

string signatures.

In this chapter we will present the state-of-the-art in anomaly detection literature,

focusing on computer security mechanisms and identifying related approaches that

are most relevant to the work proposed in this thesis. There are two types of sensors

CHAPTER 2. RELATED WORK 13

that are relevant to our work: those that classify network traffic content (network-

based anomaly sensors) and those that classify sequences of system calls (host-based

anomaly sensors).

2.1.1 Network-based Anomaly Detection

Network-based anomaly detection systems can operate at different levels: they can

detect anomalies directly in the network packets, or they can reconstruct the con-

tent flows to extract more information about the protected network. Initial work

towards anomaly detection at the packet level computed models related to header

information. For example NIDES [40], SPADE [38] and ADAM [3] proposed models

that characterized the normal distributions of IP addresses and ports, while later

PHAD [61] learned the normal ranges of values for each packet header field at the

data link (Ethernet), network (IP), and transport/control layers (TCP, UDP, ICMP).

NETAD [62] introduced modeling of the first 48 byte values in a packet which, in the

case of TCP data, also includes 8 bytes of payload.

The full transition to payload based anomaly detection at the packet level was

done by PAYL [110; 108], which models 1-gram frequency distributions for a given

packet length. Later Anagram [109] introduced the modeling technique of a mixture

of high-order n-grams (n > 1) designed to detect anomalous network packet payloads

while exhibiting resistance to mimicry attacks. Anagram uses Bloom filters (BF)[6]

to store n-grams of normal and malicious packet payloads. Depending on the ratio of

normal and anomalous n-grams in the BF, incoming packets are deemed either normal

or abnormal. The use of Bloom filters makes this method computationally efficient

and more general, as opposed to the approach proposed by Rieck and Laskov [85],

which stores the n-grams in a tree data structure for individual connections. In the

detection phase they compare the test data against the pre-computed trees.

When network packets are reconstructed, more features can be extracted com-

pared to packet content inspection. Systems such as Emerald [80], NetSTAT [104]

CHAPTER 2. RELATED WORK 14

and Bro [78] reconstruct network packets to extract information related to session

duration, service type, bytes transferred, etc. in order to detect network attacks. A

similar approach to Payl, proposed by Kruegel et al [49], describes a service-specific

intrusion detection system that works at the flow level. They combine the type, length

and payload distribution of web requests as features in a statistical model to compute

an anomaly score of a web request. Another proposed approach, Spectrogram [94],

uses n-gram modeling in the form of mixture of Markov chains to defend against

web-layer code-injection attacks.

2.1.2 Host-based Anomaly Detection

Host based AD sensors provide one mechanism for detecting the presence or activation

of malware on a host by observing a shift in an application’s execution profile. The

seminal work of Hofmeyr, Somayaji, and Forrest [39; 92] helped initiate application

behavior profiling at the system call level. This interface represents the services that

malcode, once activated, must use to effect persistent changes and other forms of I/O.

In particular, malware may begin to use system services that the application has not

previously invoked, or may employ the set of already–used services in new ways (e.g.,

via new arguments to those calls[70]). Such information is now easy to collect; the

strace and ltrace tools for Unix perform exactly this task.

Wagner and Dean [106] proposed a static analysis approach to automatically derive

a model of application behavior. Their approach assumes that a model of expected

application behavior is pre-computed statically from the source code and the program

is monitored to check its system call trace against the model at runtime. BlueBox [11]

uses system call introspection to create an infrastructure for defining and enforcing

fine-grained process capabilities in the kernel, specified as a set of rules. Systrace [81]

also supports fine grained process confinement while eliminating the need to run pro-

grams in privileged process context. Policies are generated automatically in a training

session or are generated during program execution. VtPath [24] utilizes return ad-

CHAPTER 2. RELATED WORK 15

dress information extracted from the call stack to build an anomaly detection system.

This approach generates the abstract execution path between two program execution

points, and decides whether this path is valid based on what has been learned on

the normal runs of the program. Another approach that builds an execution graph

without requiring static analysis of the source code or binary and conforms to the

control graph of the program was proposed by Gao et al. [32]. An execution graph

model is defined as a model that accepts the same system call sequences as would be

accepted by a model built from the control flow graph of the program, with the limi-

tation that this type of models can train only on observed runs of the program which

may miss entire branches of the program that static analysis would uncover. Giffen

et al. [36] proposes a hybrid approach that incorporates in a model of a program’s

binary code knowledge of the environment in which the program runs, and increases

the accuracy of the models with a dataflow analysis algorithm for context-sensitive

recovery of static data.

An overall observation is that, for both network-based and host-based sensors,

effective anomaly detection requires highly accurate modeling of normal data — a

problem that is the focus of this thesis. Fogla and Lee [25] showed how some payload-

based network anomaly detection systems can be evaded by polymorphic blending

attacks, while Wagner and Soto [107] developed a theoretical framework for evaluating

the security of host-based anomaly detection systems against mimicry attacks. Taylor

and Gates [34] noted the problem of polluted or unclean training data sets as a key

roadblock to the construction of effective AD sensors, as “ground truth” for large,

realistic data sets is extremely hard to determine. For this reason we propose an

unsupervised method for sanitizing training datasets both at local and distributed

levels. In our experiments we focus mostly on network-based sensors, but discuss the

application of the same techniques to host-based AD sensors as well.

CHAPTER 2. RELATED WORK 16

2.2 Ensemble and Meta-learning Methods

Our approach for sanitizing training datasets shares elements with ensemble methods,

which are reviewed by Dietterich [22]. It is important to note that, while most of

these methods traditionally fall in the category of supervised learning algorithms, due

the applications of our work (e.g. real network traffic), we are forced to use unlabeled

training data. In particular, we construct a set of classifiers and then classify the

new data points using a (weighted) vote. We generate AD models from slices of

the training data, thus manipulating the training examples presented to the learning

method. Another similar machine learning approach is that of Bagging Predictors [8],

which uses a learning algorithm with a training set that consists of a sample of training

examples drawn randomly for an initial data set. The cross-validated committees

method [76] proposes to construct a training model by leaving out disjoint subsets of

the training data. ADABoost [27] generates multiple hypothesis and maintains a set

of weights over the training example. Each iteration invokes the learning algorithm

to minimize the weighted error and returns a hypothesis, which is used in a final

weighted vote.

Probably the most similar work to ours is MetaCost [23], which is an algorithm

that implements cost-sensitive classification. Instead of modifying an error minimiza-

tion classification procedure, it views the classifier as a black box, the same as we do,

and wraps the procedure around it in order to reduce the loss. MetaCost estimates

class probabilities and relabels the training examples such that the expected cost of

predicting new labels is minimized. Finally it builds a new model based on the re-

labeled data. Our algorithm also labels the training examples in the voting process

and uses them accordingly in the training phase.

The application of ensemble methods for computer security applications was in-

troduced by JAM [97]; this seminal work focuses on developing, implementing, and

evaluating a range of unsupervised learning strategies and combining techniques for

fraud detection systems. It also presents methods for “meta-learning” or computing

CHAPTER 2. RELATED WORK 17

sets of “base classifiers” over various partitions or sampling of the training data. The

combining algorithms proposed are called “class-combiner” and “stacking” and they

are built based on work presented by Chan and Stolfo [10] and Wolpert [111]. The

objective of both “combiner” and “stacking” is to improve the overall prediction accu-

racy by exploring the diversity of multiple learning algorithms through meta-learning.

In our work we use the same learning algorithm while exploring the diversity of mul-

tiple training example sets. The idea of stacked generalization was further improved

by Ting and Witten [102] proposing the use of class distributions rather than class

predictions.

Our voting technique also resembles a method for determining the density esti-

mation of an AD model. Yeung and Chow [113] previously proposed the use of non-

parametric density estimation based on Parzen-window estimators [77] with Gaussian

kernels in order to build an anomaly detection system. Their sensor receives data la-

beled as normal to estimate the density of a model while our approach does not

require any prior labeling. However, their technique requires essentially no training

time, but introduces a high computational demand during testing.

2.3 Automated Calibration

We define the “automated calibration” as the process of automatically determining

anomaly detection parameters based on the intrinsic characteristics of the data that

is modeled. Most AD sensors presented in the literature determine some of these

parameters empirically or require them to be user defined [26; 92; 94]. However, Tan

and Maxion [101] show that the choice of such parameters has a significant impact

on the detection performance, thus it is very important to make an “optimal”, or at

least “reasonably good”, choice.

Anagram [109] determines the stability of an AD model automatically based on the

rate at which new content appears in the training data. pH [92] proposes heuristics for

CHAPTER 2. RELATED WORK 18

determining an effective training time, minimizing human intervention, but requiring

user defined thresholds. Payl [108] has a calibration phase for which a sample of

test data is measured against the model and a threshold is chosen. The threshold

is updated through a subsequent round of testing. Kruegel et al. [50] propose a

web-based anomaly detection mechanism, which uses a number of different models

to characterize the parameters used in the invocation of server-side programs. For

these models, dynamic thresholds are generated in the training phase, by evaluating

the maximum score values given on a validation dataset. EMT [99], a data mining

system that computes behavior-based profiles of user email accounts, also proposes a

calibration phase for the thresholds used in determining viral propagation. Two types

of threshold settings are used: a threshold proportional to the standard deviation of

the histograms representing the user profile, and a threshold based upon the changing

of trend, both conditioned on a window size of prior histogram values. Ringberg et

al. [86] talk about the difficulty of tuning parameters for PCA-based techniques for

detecting anomalous traffic in IP networks and discuss the capability of anomalies

to pollute the normal traffic. We note that our work presents a solution for data

pollution while also offering a generalized method for calibrating the sanitization

parameters.

2.4 AD Model Update

As the systems under protection progress and evolve over time, what may be con-

sidered as “normal” behavior can legitimately change over time as well. As a con-

sequence, the AD models that encapsulate this behavior need to adapt to this phe-

nomenon, referred to as concept drift. We define the model update as the process of

adapting the AD models to legitimate changes in order to maximize the accuracy

of the AD sensors. Our online sanitization benefits from the advantages of both

sanitization and updating processes, in an unsupervised learning environment.

CHAPTER 2. RELATED WORK 19

Most publications which propose updating the model after significant changes

to the environment, data stream, or application use supervised learning techniques,

such as the approach proposed by Gama et al. [31]. Methods of this type maintain

an adaptive time window on the training data [43], select representative training ex-

amples [45], or weight the training examples [44]. The key idea is to automatically

adjust the window size, the example selection, and the example weighting, respec-

tively, so that the estimated generalization error is minimized. Consequently, these

methods assume the existence of labeled data which is not the case for the appli-

cations that we are interested in analyzing. It seems that anomaly detectors would

benefit from an additional source of information that can confirm or reject the initial

classification, and Pietraszek [79] suggests using human–supervised machine learning

for such tuning.

Our second approach for model update proposes to use feedback information from

three sources that are part of the system under protection: file system, database and

patch installation. For the patch approach, our feasibility study was validated by the

work proposed by Li et al. [53] for gray-box system-call-based anomaly detectors(i.e.

trained with system-call traces of the program when processing intended inputs).

They present an algorithm by which an execution graph can be converted from the

program for which it was originally trained to a patched version of that program.

For the file system and database approach we correlate HTTP requests and re-

sponses along with the SQL queries and replies that correspond to each HTTP pair.

Maggi et al. [60] introduce a technique that addresses the problem of web applica-

tion concept drift, by modeling both the HTTP requests and responses using the

webanomaly [51] sensor. They parse the HTML documents that are returned as re-

sponses to extract links and forms and then they pass them to the anomaly detection

sensor in order to update the models. As a result of this analysis, the anomaly

detector is able to adapt to changes in the session structure resulting from the intro-

duction of new resources, and also to changes in the request structure resulting from

CHAPTER 2. RELATED WORK 20

the introduction of new parameters. Our approach is more general as it considers the

input directly from the source of change: the system components themselves, as the

response of the web server can be compromised by a sophisticated attacker.

2.5 AD Model Exchange

Our distributed strategy for AD model sanitization leverages the location diversity

of collaborating sites to exchange abnormal models that can be used to improve each

site’s AD model. The exchange of abnormal models was also used in JAM [97] for

commercial fraud detection. Fraud detection systems can be substantially improved

by combining multiple models of fraudulent transactions shared among banks. We

apply a similar idea in the case of network traffic content-based anomaly detection

in order to alleviate the effects of training attacks. If the exchanged models have

similar features with the local normality model, then the local model is recomputed,

excluding the similarities which, in this case, represent bad behavior.

We also used the idea of model exchange in previous work [13], where the AD

model acts as a profile of device behavior in a MANET environment. The model

can be utilized by peers to determine its trustworthiness by comparing their mutual

models exchanged between the devices. Rather than proving one’s trustworthiness

via a certificate, a credential, or a representation of “reputation” MANET nodes

are authenticated by their behavioral profile of how they typically interact. Other

nodes may validate the node by conformance to their own profiles, and to ensure

the new node subsequently behaves in conformance with its announced profile. For

this application, when the exchanged models are similar, they are aggregated to

produce one unified view of the current MANET and to reduce false suspicions of

anomalous behavior. This technique was later expanded into a more complete system

for MANET access control [28].

Frias-Martinez et al. [30] also used the concept of model exchange to reduce false

CHAPTER 2. RELATED WORK 21

positive rate in anomaly detection sensors. Collaborating security approaches often

use sharing of alerts to detect distributed attacks, reducing the false positive rate as

a consequence [95; 75; 89; 48; 73; 103]. However, these approaches are not optimal in

the presence of isolated attacks that do not affect the whole network. For that case,

Frias-Martinez et al. [30] proposed a cluster-based AD sensor that relies on clusters

of behavior profiles to identify anomalous behavior. The behavior of a host raises an

alert only when a group of collaborative host profiles with similar behavior (cluster

of behavior profiles) detect the anomaly, rather than just relying on the host’s own

behavior profile to raise the alert.

CHAPTER 3. TRAINING DATASET SANITIZATION 22

Chapter 3

Training Dataset Sanitization

To introduce our training data sanitization technique, which forms the backbone of

our framework for self-adapting AD sensors, we will start from two key challenges for

anomaly detection systems: an under-trained (overly generalized) sensor, or an over-

trained (exceedingly strict) sensor. These situations are particularly hard to cope

with in practice, as unsupervised AD systems often lack a measure of ground truth to

compare to and verify against. An additional, and equally troubling aspect regards

the presence of an attack in the training data: such an occurrence can “poison” the

sensor, thus rendering it incapable of detecting future or closely related instances of

this attack. These problems appear to stem from a common source: the quality of the

normality model that an AD system employs to detect abnormal data. This single

and monolithic normality model is the product of a training phase that traditionally

uses all data from a non-sanitized training data set.

We conjecture that in order to generate an accurate normal model, researchers

must utilize an effective sanitization process for the AD training data set. To that

end, removing all abnormalities, including attacks and other traffic artifacts, from

the AD training set is a crucial first step. Supervised training using labeled datasets

appears to be an ideal cleaning process. However, the size and complexity of training

data sets obtained from real-world network traces makes such labeling infeasible. In

CHAPTER 3. TRAINING DATASET SANITIZATION 23

addition, semi–supervised or even unsupervised training using an automated process

or an oracle is computationally demanding and may lead to an over-estimated and

under-trained normal model. Even if we assume that unsupervised training can detect

100% of the attacks, the resulting normal model may contain abnormalities that

should not be considered part of the normal model. These abnormalities represent

data patterns or traffic that are not attacks, but still appear infrequently or for a

very short period of time. For example, the random portion of HTTP cookies and

HTTP POST requests may be considered non-regular and thus abnormal. This type

of data should not form part of the normal model because it does not convey any extra

information about the site or modeled protocol. Thus, in practice, both supervised

and unsupervised training might fail to identify and remove from the training set

non-regular data, thereby producing a large and over-estimated normal model. We

introduce a new unsupervised training approach that attempts to determine both

attacks and abnormalities and separate them from the regular, normal model.

3.1 Data Sanitization Using Micro-Models

We observe that for a training set that spans a long period of time, attacks and

abnormalities are a minority class of data. While the total attack volume in any

given trace may be high, the frequency of specific attacks is generally low relative to

legitimate input. This assumption may not hold in some circumstances, e.g., during

a DDoS attack or during the propagation phase of a worm such as Slammer. We can

possibly identify such non-ideal AD training conditions by analyzing the entropy of

a particular dataset (too high or too low may indicate exceptional circumstances).

We leave this analysis for the future. Although we cannot predict the time of an

attack in the training set, the attack itself will manifest as a few packets that will

not persist throughout the dataset. Common attack packets tend to cluster together

and form a sparse representation over time. For example, once a worm outbreak

CHAPTER 3. TRAINING DATASET SANITIZATION 24

starts, it appears concentrated in a relatively short period of time, and eventually

system defenders quarantine, patch, reboot, or filter the infected hosts. As a result,

the worm’s appearance in the dataset decreases [67]. We expect these assumptions to

hold true over relatively long periods of time, and this expectation requires the use of

large training datasets to properly sanitize an AD model. In short, larger amounts of

training data can help produce better models — a supposition that seems intuitively

reasonable.

We must be cautious, however, as having a large training set increases the proba-

bility that an individual datum appears normal (the datum appears more frequently

in the dataset; consequently, the probability of it appearing “normal” increases). Fur-

thermore, having the AD system consider greater amounts of training data increases

the probability of malcode presence in the dataset. As a result, malcode data can

poison the model, and its presence complicates the task of classifying normal data.

We next describe how we use micro-models in an ensemble arrangement to process

large training data sets in a manner that resists the effects of malcode content in that

data.

3.1.1 Micro-model Definition

Our method of sanitizing the training data for an AD sensor employs the idea of “en-

semble methods.” Dietterich [22] defines an ensemble classifier as “a set of classifiers

whose individual decisions are combined in some way (typically by weighted or un-

weighted voting) to classify new examples.” Methods for creating ensembles include,

among other actions, techniques that manipulate the training examples. Given our

assumption about the span of attacks in our training set (see beginning of section 3.1),

it seems appropriate to use time-delimited slices of the training data.

We employ the following strategy: consider a large training dataset T partitioned

into a number of smaller disjoint subsets (micro-datasets):

T = {md1, md2, . . . , mdN}, (3.1)

CHAPTER 3. TRAINING DATASET SANITIZATION 25

where mdi is the micro-dataset starting at time (i − 1) ∗ g and, g is the granularity

for each micro-dataset.

We can now apply a given anomaly detection algorithm. We define the model

function AD:

M = AD(T), (3.2)

where AD can be any chosen anomaly detection algorithm, T is the training data set,

and M denotes the model produced by AD for the give training set.

In order to create the ensemble of classifiers, we use each of the “epochs” mdi

to compute a micro-model, Mi. Mi = AD(mdi). We posit that each distinct attack

will be concentrated in (or around) time period tj affecting only a small fraction of

the micro-models: Mj may be poisoned, having modeled the attack vector as normal

data, but model Mk computed for time period tk, k 6= j is likely to be unaffected by

the same attack. In order to maximize this likelihood, however, we need to identify

the right level of time granularity g. Naturally, epochs can range over the entire

set of training data. Our experiments analyze network packet traces captured over

approximately 500 hours. We find that a value of g from 3 to 5 hours was sufficient

to generate well behaved micro-models. In chapter 4 we will present a method for

determining the granularity automatically.

3.1.2 Sanitized and Abnormal Models

Once the micro-models are built, they can be used, together with the chosen AD

sensor, as a classifier ensemble: a given network packet, which is to be classified as

either normal or anomalous, can be tested, using the AD sensor, against each of the

micro-models. One possibility would be to apply this testing scheme to the same

data set that was used to build the micro-models (we call this process introspection).

Another option is to apply the micro-model testing to a second set of the initially

available traffic, of smaller size. The ultimate goal is to effectively sanitize the training

data set and thus obtain the clean training data set needed for anomaly detection.

CHAPTER 3. TRAINING DATASET SANITIZATION 26

Once again, we treat the AD sensor at a general level, this time considering a

generic TEST function. For a packet Pj part of the tested data set, each individual

test against a micro-model results in a label marking the tested packet either as

normal or abnormal:

Lj,i = TEST (Pj, Mi) (3.3)

where the label, Lj,i, has a value of 0 if the model Mi deems the packet Pj normal,

or 1 if Mi deems it abnormal.

However, these labels are not yet generalized; they remain specialized to the micro-

model used in each test. In order to generalize the labels, we process each labeled

dataset through a voting scheme, which assigns a final score to each packet:

SCORE(Pj) =
1

W

N∑

i=1

wi · Lj,i (3.4)

where wi is the weight assigned to model Mi and W =
∑N

i=1
wi. We have investigated

two possible strategies: simple voting, where all models are weighted identically, and

weighted voting, which assigns to each micro-model Mi a weight wi equal to the

number of packets used to train it. The study of other weighting strategies can

provide an avenue for future research.

To understand the AD decision process, we consider the case where a micro-

model Mi includes attack-related content. When used for testing, the AD may label

as normal a packet containing that particular attack vector. Assuming that only

a minority of the micro-models will include the same attack vector as Mi, we use

the voting scheme to split our data into two disjoint sets: one that contains only

majority-voted normal packets, Tsan from which we build the sanitized model Msan,

and the rest, used to generate a model of abnormal data, Mabn.

Tsan =
⋃
{Pj | SCORE(Pj) ≤ V }, Msan = AD(Tsan) (3.5)

Tabn =
⋃
{Pj | SCORE(Pj) > V }, Mabn = AD(Tabn) (3.6)

CHAPTER 3. TRAINING DATASET SANITIZATION 27

where V is a voting threshold. In the case of unweighted voting, V is the maximum

percentage of abnormal labels permitted such that a packet is labeled normal. Conse-

quently, it must be the case that 1−V > Np, where Np is the maximum percentage of

models expected to be poisoned by any specific attack vector. We provide an analysis

of the impact of this threshold on both voting schemes in the evaluation section (see

the full architecture in figure 3.1).

After this two-phase training process, the AD sensor can use the sanitized model

for online testing. Note that we have described a general approach to sanitization

without resorting to the specific details of the AD decision process; it is enough that

the AD sensor outputs a classification for each discrete piece of its input (e.g., a

network packet or message). Consequently, we believe that our approach can help

generate sanitized models for a wide range of anomaly detection systems.

M1 M2 MK

Voting
algorithm

Abnormal

model

Sanitized
modelTraining phase

µM1 µM2 µMK

Voting
algorithm

Abnormal
model

Sanitized
modelTraining phase

Micro-datasets

… … ..

Training dataset

Figure 3.1: The training dataset sanitization architecture

3.2 Sanitization Effect on AD Performance

In the following experiments, we use two anomaly sensors: Anagram [109] and

Payl [108; 110]. Both sensors are n-gram content-based anomaly detectors for network

CHAPTER 3. TRAINING DATASET SANITIZATION 28

packets (although we extend one of them to handle sequences of function identifiers).

Although they both use an n-gram approach and train on normal unencrypted net-

work packet content, these sensors have very different learning algorithms.

3.2.1 AD Sensors

The Payl [108; 110] AD sensor is a content-based anomaly detector developed in the

Columbia University Intrusion Detection Systems(IDS) Lab. The sensor is based on

the principle that zero-day attacks are delivered in packets whose data is unusual and

distinct from all prior normal content flowing to or from the victim site. A Payl model

contains 1-gram byte frequency distributions conditioned on the port/service and on

the packet length, producing a set of statistical centroids that in total provides a fine-

grained and compact model of a site’s actual content flow. In the detection phase,

the packets are compared against the model to check for abnormalities, computing

the Mahalanobis distance between the frequency distribution of the tested packet and

the correspondent model. When the value of this metric exceeds the threshold value,

the packet is deemed abnormal. The sensor also allows the possibility of performing

ingress/egress correlation, by analyzing the bidirectional traffic to detect a worm

propagation and its signature.

Anagram[109] is an anomaly detection sensor that uses a mixture of high-order

n-grams to model and test network traffic content and it was also developed in the

Columbia University IDS Lab. The n-grams are generated by sliding windows of

arbitrary lengths over a stream of bytes, which can be per network packet, per request

session, or other type of data unit. The use of higher grams is more suitable for

detecting significant anomalous byte sequences and their location in the data stream.

The Anagram content models contain the set of normal n-grams and are implemented

using highly efficient Bloom filters[6], reducing space requirements. In the testing

phase the percentage of never-before-seen n-grams out of the total n-grams in the

packet is computed and thresholding is applied to classify the packet.

CHAPTER 3. TRAINING DATASET SANITIZATION 29

3.2.2 Experimental Corpus

Our experimental corpus consists of 500 hours of real network traffic, which con-

tains approximately four million content packets. We collected the traffic from three

different hosts: www, www1, and lists. www hosts the Computer Science Depart-

ment homepage and includes scripts for services such as a gateway to a tech-report

database, student and faculty directory, search-engines etc. www1 is a gateway to

the homepages of students in the Computer Science Department, while lists hosts

the Computer Science Mailing Lists. The three servers exhibit different content and

volume of data. We partitioned this data into three separate sets: two used for

training and one used for testing. We use the first 300 hours of traffic to build the

micro-models and the next 100 hours to generate the sanitized model.

The remaining 100 hours of data was used for testing. It consists of approximately

775, 000 content packets (with 99 attack packets) for www1, 656, 000 packets (with 70

attack packets) for www, and 26, 000 packets (with 81 attack packets) for lists. Figure

3.2 presents both the total content packet and attack packet distributions for www1.

Given that www1 exhibits a larger volume of traffic, we chose to perform a more

in-depth analysis on its traffic. In addition, we applied a cross-validation strategy:

we used the last 100 hours to generate the sanitized model while testing on the other

preceding 100-hour dataset.

3.2.3 Performance Results

We recall that throughout this thesis, we refer to detection and false positive

rates as rates determined for a specific class of attacks that we observed

in these data sets. We note that discovering ground truth for any realistic data set

is currently infeasible.

Initially, we measured the detection performance for both Anagram and Payl

when used as standalone AD sensors without sanitizing the training data. Then, we

repeated the experiments with the same setup and network traces, but we included

CHAPTER 3. TRAINING DATASET SANITIZATION 30

0 20 40 60 80 100 120 140 160
0

2

4

6

8
x 10

4

3−hour granularity

N
um

 o
f p

ac
ke

ts

3−hour granularity

N
um

 o
f a

tta
ck

 p
ac

ke
ts

0 20 40 60 80 100 120 140 160
0

10

20

30

criman
cbac
mirela
nikon

Figure 3.2: Total content packet and attack packet distributions for www1

the sanitization phase. Table 3.1 presents our findings, which show that sanitization

boosts the detection capabilities of both sensors. The results summarize the average

values of false positive (FP) and true positive (TP) rates. Both voting methods

perform well. We used a granularity of three hours and a value of V that maximizes

the detection performance (in our case V ∈ [0.15, 0.45]).

The optimal operating point is that which maximizes the detection of the real

alerts and has the lowest FP rate. For Anagram, the sanitized and abnormal models

were built to be disjoint (no abnormal feature would be allowed inside the sanitized

model). If abnormal features were allowed in the sanitized model they could com-

promise the quality of the model given that the model contains only a set of normal

grams. The traffic contains instances of phpBB forum attacks (mirela, cbac, nikon,

criman) [84] for all three hosts that are analyzed.

Note that, without sanitization, the normal models used by Anagram are poisoned

with attacks and thus unable to detect new attack instances appearing in the test

data. Therefore, increasing AD sensor sensitivity (e.g. changing its internal detec-

tion threshold) would only increase false alerts without increasing the detection rate.

CHAPTER 3. TRAINING DATASET SANITIZATION 31

Table 3.1: AD sensors comparison

Sensor
www1 www lists

FP(%)TP(%)FP(%)TP(%)FP(%)TP(%)

Anagram 0.07 0 0.01 0 0.04 0

Anagram+Snort 0.04 20.20 0.29 17.14 0.05 18.51

Anagram+sanitization 0.10 100 0.34 100 0.10 100

Payl 0.84 0 6.02 40 64.14 64.19

Payl+sanitization 6.64 76.76 10.43 61 2.40 86.54

Table 3.2: Signal-to-noise ratio TP/FP: higher values mean better results

Sensor www1 www lists

Anagram 0 0 0

Anagram+Snort 505 59.10 370.2

Anagram+sanitization 1000 294.11 1000

Payl 0 6.64 1.00

Payl+sanitization 11.56 5.84 36.05

CHAPTER 3. TRAINING DATASET SANITIZATION 32

When using previously known malcode information (using Snort signatures repre-

sented in an “abnormal model”), Anagram was able to detect a portion of the attack

packets. Of course, this detection model is limited because it requires that a new

0-day worm will not be sufficiently different from previous worms that appear in the

traces. To make matters worse, such a detector would fail to detect even old threats

that do not have a Snort signature. On the other hand, if we enhance Anagram’s

training phase to include sanitization, we do not have to rely on any other signature

or content-based sensor to detect malware.

Furthermore, the detection capability of a sensor is inherently dependent on the

algorithm used to compute the distance of a new worm from the normal model.

For example, although Payl is effective at capturing attacks that display abnormal

byte distributions, it is prone to miss well-crafted attacks that resemble the byte

distribution of the target site [25]. Our traces contain such attacks: we observe this

effect when we use the sanitized strategy on Payl, as we can only get a maximum

86.54% attack detection rate. We can see that the sanitization phase is a necessary

but not sufficient process for reducing false negatives: the actual algorithm used by

the sensor is also important in determining its overall detection capabilities.

Interestingly, the combination of Payl operating on the lists data set without

sanitization shows a high FP rate compared to the same case where sanitization is

used. After investigating this phenomena, we realized that for a specific packet length

(161) the unsanitized model included a centroid that caused many false positives. The

sanitized model did not contain a specific centroid created for length 161 (the packets

with this length were considered abnormal in the sanitization phase) and the closest

length centroid (178) was used for the testing phase.

Overall, our experiments show that the AD signal-to-noise ratio (i.e., TP/FP)

can be significantly improved even in extreme conditions, when intrinsic limitations

of the anomaly detector prevent us from obtaining a 100% attack detection, as shown

in Table 3.2. Higher values of the signal-to-noise ratio imply better results. There is

CHAPTER 3. TRAINING DATASET SANITIZATION 33

one exception: Payl used on the www data set. In this case, the signal-to-noise ratio

is slightly lower, but the detection rate is still higher after using sanitization.

To stress our system and to validate its operation, we also performed experiments

using traffic in which we injected worms such as CodeRed, CodeRed II, WebDAV,

and a worm that exploits the nsiislog.dll buffer overflow vulnerability (MS03-022). All

instances of the injected malcode were recognized by the AD sensors when trained

with sanitized data. That result reinforced our initial observations about the saniti-

zation phase: we can increase the probability of detecting both a zero-day attack and

previously seen malcode.

3.2.4 Analysis of Sanitization Parameters

We have seen how our sanitization techniques can boost the performance of the AD

sensors. Our results summarize the FP and the detection rates as averaged values

obtained for the optimal parameters. We next explore these parameters and their

impact on performance with a more detailed analysis using our Anagram implemen-

tation.

There are three parameters we need to fine-tune: the granularity of the micro-

models, the voting algorithm, and the voting threshold. In order to determine a good

granularity, we have to inspect the volume of traffic received by each site (given the

characteristics of the chosen anomaly detector) such that we do not create models that

are under-trained. In our initial experiments, we used 3-hour, 6-hour, and 12-hour

granularity. We employed both the simple and weighted voting algorithms proposed

in Section 3.1. The threshold V is a parameter that needs to be determined. It

depends on the site/application modeled by the sensor. As we show, both the optimal

values of V and the micro-model granularity have close values for all the sites in our

experiments.

In Figures 3.3 and 3.4, we present the performance of the system when using

Anagram enhanced with the sanitization method applied on the www1 traffic. We

CHAPTER 3. TRAINING DATASET SANITIZATION 34

notice that the weighted voting algorithm appears to be a slight improvement over

the simple voting algorithm. We seek a value for V that maximizes detection and

achieves the lowest possible FP rate. We observe that the sanitized model built using

the 3-hour micro-models shows the best performance, achieving a detection rate of

100% and minimizing the FP rate. The granularity and the voting threshold are

inversely proportional because for the same dataset fewer models are built when the

granularity is increased.

In Figures 3.5 and 3.6, we present the results for www and lists for a granularity

of three hours and for both types of voting techniques. The best cases for these two

sites are reached at almost the same value as the ones obtained for www1. We observe

that the best case is where V has the minimum value 0.01.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

V

F
al

se
 p

os
iti

ve
 r

at
e

(%
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

50

100

V

D
et

ec
tio

n
ra

te
 (

%
)

1−hour

3−hour

6−hour

12−hour

Figure 3.3: Performance for www1 for 3-hour granularity when using simple voting

and Anagram; the circled points are the optimal ones

To further evaluate our approach, we studied the impact that granularity has on

CHAPTER 3. TRAINING DATASET SANITIZATION 35

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

V

F
al

se
 p

os
iti

ve
 r

at
e

(%
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

50

100

V

D
et

ec
tio

n
ra

te
 (

%
)

1−hour

3−hour

6−hour

12−hour

Figure 3.4: Performance for www1 when using weighted voting and Anagram; the

circled points are the optimal ones

the performance of the system. We fixed the voting threshold, and we sampled a

large range of granularity values. This analysis allowed us to determine the best

granularity. In Figure 3.7, we observe that the granularity of three hours performs

the best, given the two threshold bounds 0.15 and 0.45 obtained from the previous

experiments. For all other values of V ∈ (0.15, 0.45), the granularity of three hours

is the optimal choice. Notice that for V = 0.45, all values of granularity from 3 to 12

hours are optimal.

When using Payl, the granularity of three hours again performs the best, given

the two threshold bounds 0.15 and 0.55. Payl behaves differently than Anagram due

to its different learning algorithm. The way the models are built is more dependent

on the number of training samples because models are created for each packet length.

As we mentioned previously, our technique assumes the use of a large training

CHAPTER 3. TRAINING DATASET SANITIZATION 36

0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

V

F
al

se
 p

os
iti

ve
 r

at
e

(%
)

0.1 0.2 0.3 0.4 0.5 0.6
70

80

90

100

V

D
et

ec
tio

n
ra

te
 (

%
)

simple voting
weighted voting

Figure 3.5: Performance for www for 3-hour granularity when using Anagram

dataset in order to increase the probability that an individual datum which is normal

is not incorrectly deemed an anomaly. To analyze the impact that training data set

size has on performance, we tested our methodology on Anagram using a certain

percentage of the micro-models, starting from a randomly chosen position in the

training dataset, as shown in Figure 3.9. This experiment uses 300 hours of training

data, a granularity of three hours per micro-model, the weighted voting scheme, and

a threshold of V = 0.45. The FP rate degrades when only a percentage of the 100

models is used in the voting scheme. The detection rate can vary for small numbers

of micro-models, depending on the randomly chosen position in the training dataset.

Another factor is the relationship between the internal threshold of the sensor,

τ , and the voting threshold, V , and the way it influences the performance of the

system. Intuitively, if the anomaly sensor is more relaxed, the amount of data seen

as anomalous by the micro-models will decrease. As a result, the sanitized model

CHAPTER 3. TRAINING DATASET SANITIZATION 37

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

V

F
al

se
 p

os
iti

ve
 r

at
e

(%
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

50

100

V

D
et

ec
tio

n
ra

te
 (

%
)

simple voting
weighted voting

Figure 3.6: Performance for lists for 3-hour granularity when using Anagram

will actually increase in size and exhibit a smaller FP rate as shown in Figure 3.10.

Although using a “relaxed” AD can improve the FP rate, we do not advocate such

an approach to the extreme. In our experiments, the threshold for Anagram was set

to τ = 0.4, and we analyzed the effect of changing the internal threshold had over the

performance of our system. We observed that if we increase the internal threshold,

the FP rate decreases along with the detection rate.

3.3 Shadow Sensor Redirection

In order to further classify the alerts produced by the anomaly detector, we use a

heavily instrumented host-based “shadow sensor” system akin to an “oracle”. This

type of systems perform substantially slower, usually orders of magnitude slower,

than the native, un-instrumented application [1], which means we need to produce an

CHAPTER 3. TRAINING DATASET SANITIZATION 38

1 3 6 12 24 48 300
0

0.5

1

Granularity (hours)

F
al

se
 p

os
iti

ve
 r

at
e

(%
)

1 3 6 12 24 48 300
0

50

100

Granularity (hours)

D
et

ec
tio

n
ra

te
 (

%
) V=0.15

V=0.45

Figure 3.7: Granularity impact on the performance of the system for www1 when

using Anagram; the circled points are the optimal ones

AD sensor which exhibits a low enough FP rate. The shadow sensor processes both

true attacks and incorrectly classified packets to validate whether a packet signifies a

true attack. We evaluate our approach considering the computational costs involved

in diverting each alert to a host-based shadow sensor. Both the feasibility and scal-

ability of this scenario depend mainly on the amount of alerts generated by the AD

sensor, since all “suspect-data” (data that causes the sensor to generate an alert) are

significantly delayed by the shadow sensor.

We examine the average time it takes to process a request, and the impact that

sanitization has on this time. In addition, we estimate the overall computational

requirements of a detection system consisting of an AD sensor and a host-based

shadow sensor. The AD sensor acts as a packet classifier that diverts all packets that

generate alerts to the shadow sensor while allowing the rest of the packets to reach

CHAPTER 3. TRAINING DATASET SANITIZATION 39

1 3 6 12 24 48 300
5

10

15

Granularity (hours)

F
al

se
 p

os
iti

ve
 r

at
e

(%
)

1 3 6 12 24 48 300
0

50

100

Granularity (hours)

D
et

ec
tio

n
ra

te
 (

%
) V=0.15

V=0.55

Figure 3.8: Granularity impact on the performance of the system for www when using

Payl; the circled points are the optimal ones

the native service. This architecture effectively creates two service paths.

Our goal is to create a system that does not incur a prohibitive increase in the

average request latency and that can scale to millions of service requests. Due to

the overhead of the shadow sensor, we cannot redirect all traffic to it. Therefore,

we would like the AD to shunt only a small fraction of the total traffic to the more

expensive shadow. The shadow sensor serves as an oracle that confirms or rejects the

AD’s initial classification (see the full architecture in figure 3.11).

Although one could argue that using a shadow sensor alone is sufficient to protect

a system from attack (and therefore we have scant need of a robust anomaly sensor

in the first place), shadow sensors have significant shortcomings. First, they impose a

hefty performance penalty (due to the instrumentation, which could include tainted

dataflow analysis, a shadow stack, control-flow integrity, instruction set randomiza-

CHAPTER 3. TRAINING DATASET SANITIZATION 40

1 10 20 30 40 50 60 70 80 90 100
0

50

100

Number of micro−models

F
al

se
 p

os
iti

ve
 r

at
e

(%
)

1 20 40 60 80 100
90

95

100

Number of micro−models

D
et

ec
tio

n
ra

te
 (

%
)

99.31

0.30 0.16 0.13 0.11 0.09

Figure 3.9: Impact of the size of the training dataset for www1

tion and other heavyweight detectors). Using a shadow sensor without the benefit

of an AD sensor to pre-classify input would be unacceptable for many environments.

Second, a shadow requires synchronization of state between itself and the shadowed

“production” application. In many environments, this is a difficult task. Finally,

shadow sensors have only an incomplete notion of what malicious behavior is: they

use instrumentation aimed at detecting certain classes of attacks. Thus, a shadow

sensor is not a perfect oracle. It serves only to offer a lower bound on the removal of

attacks (and it completely misses abnormalities) if it were used to directly “sanitize”

data sets.

For our performance estimation, we used two instrumentation frameworks: STEM

[91] and DYBOC [1]. STEM exhibits a 4400% overhead when an application such as

Apache is completely instrumented to detect attacks. On the other hand, DYBOC

has a lighter instrumentation, providing a faster response, but still imposes at least

CHAPTER 3. TRAINING DATASET SANITIZATION 41

0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

V

F
al

se
 p

os
iti

ve
 r

at
e

(%
)

0.1 0.2 0.3 0.4 0.5 0.6
70

80

90

100

V

D
et

ec
tio

n
ra

te
 (

%
)

τ = 0.3
τ = 0.4
τ = 0.5

Figure 3.10: Impact of the anomaly detector’s internal threshold for www1 when using

Anagram

a 20% overhead on server performance. Given that we know ground truth based on

the attacks these sensors detect, we can estimate what the answers of the shadow

servers would be. We can also estimate the overall overhead based on the reported

performance of the frameworks in [91] and [1].

To compute the overall overhead, we use the method described in [109], where the

latency of such an architecture is defined as following:

l′ = (l ∗ (1− fp)) + (l ∗Os ∗ fp) (3.7)

where l is the standard (measured) latency of a protected service, Os is the shadow

server overhead, and fp is the AD false positive rate.

Table 3.3 shows that, for all cases where an AD sensor filters the traffic, there

is a significant improvement in the overhead over the case in which all the traffic

CHAPTER 3. TRAINING DATASET SANITIZATION 42

Sanitized
model

Alert?

False false
positive

AlertTesting phase

Sanitized
model

Alert

False
positive

Testing phase

Shadow
sensor

Application

I ncoming traffic

Alert?

No Yes

Figure 3.11: The shadow sensor architecture. The sanitized model is produced as

shown in figure 3.1

is redirected to the shadow sensor (no AD sensor). To quantify the performance

loss/gain from using the sanitization phase, we compare the average latency of the

system when using Payl and Anagram with sanitized and non-sanitized training data.

The difference is not significant and, more important, with sanitization we get a better

detection rate, as discussed in previous sections.

3.4 Adversarial Scenarios

In this section we analyze how an attacker can attempt to evade our sanitization

technique. We present the most important types of attacks which are of interest to

our work and for which we try to find methods to alleviate their effect.

CHAPTER 3. TRAINING DATASET SANITIZATION 43

Table 3.3: Latency for different anomaly detectors

Sensor
STEM DYBOC

www1 www lists www1 www lists

no AD sensor 44 44 44 1.2 1.2 1.2

Anagram 1.0301 1.0043 1.0172 1.0001 1.0000 1.0000

Anagram+Snort 1.0172 1.1247 1.0215 1.0000 1.0005 1.0000

Anagram+sanitization 1.0430 1.462 1.0430 1.0002 1.0006 1.0002

Payl 1.3612 3.5886 28.5802 1.0016 1.0120 1.1282

Payl+sanitization 3.8552 5.4849 2.0320 1.0132 1.0208 1.0048

3.4.1 Polymorphic Attacks

Polymorphic attacks are of increasing concern, as they generate attack instances that

do not share a fixed signature. That emphasizes even more the idea that anomaly

detection is the appropriate solution, as opposed to signature based detectors. Fogla

et al. [25] show that anomaly detection systems provide good defense because existing

polymorphic techniques can make the attack instances look different from each other,

but cannot make them look “normal”. To test against such attacks, we used a popular

polymorphic engine, CLET [21], to generate samples of polymorphic shellcode. In

these experiments, we assume that an attacker tries to perform a training attack

using a polymorphic vector (which implies that the exploit would include polymorphic

shellcode). For the experiments, we used 2100 samples of shellcode generated with

CLET. We used 100 micro-models with a three hour granularity derived from our

dataset for www1. We poisoned each micro-model with 20 samples of shellcode.

We also poisoned the data set from which the sanitized model was built with the

remaining 100 shellcode samples.

We rebuilt the sanitized model with our system, using Anagram as the base sensor.

CHAPTER 3. TRAINING DATASET SANITIZATION 44

In the voting strategy, all of the micro-models found the 100 shellcode samples as being

anomalous, given that, on average, 82% of the n-grams from 100 samples were found

abnormal by the micro-models. After the sanitized model was computed, we tested

it against the testing dataset of 100 hours. As expected, the performance results

were identical with the ones given when the sanitized model was constructed without

any shellcode samples. These experiments indicate that the problem of continuous

polymorphic attacks can be handled by the local sanitization architecture. We are

further interested in analyzing continuous attacks which are not polymorphic.

3.4.2 Long Lasting Training Attacks

A training attack, as defined in [109], “is one whereby the attacker sends a stream

of data incrementally or continuously distant from the normal data at a target site

in order to influence the anomaly detector to model data consistent with the attack

vector”. In this case, an attack may appear in all micro-models as well as the training

dataset of the sanitized model. This type of scenario is not covered by our previous

experiments, which used real traffic containing real attacks, which appeared in a small

fraction of the micro-models. To test our methodology in such an extreme case, we

injected a specific attack packet (in our case mirela) into every micro-model as well

as the dataset from which the sanitized model was computed. Table 3.4 compares

poisoned and “clean”, or non-poisoned, sanitized models. The results were obtained

using Anagram, weighted voting, a granularity of three hours, and V = 0.35. We can

see that this method can evade our architecture.

For this reason, we want to investigate ways to alleviate the impact of long-lasting

training attacks. This section presents different advents on how we can tackle this

important problem. A complete solution to the training attack problem is presented

in chapter 6, but it involves sharing information between collaborative sites. Here we

suggest different approaches that could potentially be adopted locally, without using

external information. However a complete exploration of their applicability is left for

CHAPTER 3. TRAINING DATASET SANITIZATION 45

Table 3.4: Long lasting training attacks

Sanitized www1 www lists

model FP(%) TP(%) FP(%) TP(%) FP(%) TP(%)

non-poisoned 0.13 100 0.26 100 0.10 100

poisoned 0.10 29.29 0.26 38.27 0.10 35.80

future work.

A theoretical approach, presented by Barreno et al. [4] includes the use of a special

test set that contains several known intrusions and intrusion variants, as well as some

random points that are similar to the intrusions. After the learner is trained, misclas-

sifying a disproportionately high number of intrusions could indicate compromises.

This solution might not work in the case of 0-day attacks, which normally exhibit

different features than known attacks do. Also it is not suitable for the applications

that we are interested in because it assumes the knowledge of labeled data.

We consider two scenarios in which the attacker can pursue a training attack:

• If the attacker does not have any information about the targeted host, (e.g.

micro-models granularity, number of micro-models used in the voting technique,

volume of data received by the host, etc.) a training attack would have to be sent

“as often as possible”, with a higher rate than a normal data. That means that

the probability of choosing an attack item when randomly selecting a training

data point in a small time window increases with the volume of attack packets.

We propose to redirect a number of randomly selected training data points

(e.g. packets) to the shadow sensor in order to determine if the micro-models

classified them correctly. The time window is chosen such that the percentage of

data redirected to the shadow sensor is low (comparable to the false positive rate

of an AD sensor). In case an attack is detected, the micro-models are rebuilt

excluding the data similar to the attack instance. This approach assumes that

CHAPTER 3. TRAINING DATASET SANITIZATION 46

the datasets from which the micro-models were initially built are pre-stored.

• If the attacker has access to the training data used by the AD sensor and to

other inside information such as the granularity of the micro-models and the

number of micro-models, the attack vector can be crafted to appear at the same

rate as normal traffic. This way it would not be easy to distinguish between

normal and attack traffic. We recommend the use of active learning [66; 20;

87], for which the labels are provided by the shadow sensor. Active learning

algorithms require labels for observation that are in the region of uncertainty,

thus a small percentage of the data would be redirected to the shadow sensor.

We envision augmenting this approach with mechanisms which determine if

data is sent by a suspect source IP or subnet etc., and based on this information

identify the moment when a training attack might occur.

3.4.3 Mimicry Attacks

Wang et al. [109] define a mimicry attack “as the willful attempt to craft and shape

an attack vector to look normal with respect to a model computed by an anomaly

detector”. The attacker is assumed to have information about both the modeling

algorithm and the training data. This kind of attacks have proved particularly diffi-

cult to prevent, as they target the AD sensor directly with intimate knowledge of the

system. The sanitization methods described in this thesis aim to increase the perfor-

mance of AD systems by improving the normal models that they use; as such they

are intrinsically tied to the performance of the underlying sensor. Development of a

new generation of AD sensors that are more robust to mimicry attacks is beyond the

scope of this work; however, we will discuss here different types of mimicry attacks

and some proposed solutions to alleviate their effect.

Fogla et al. [25] present a subclass of mimicry attacks called polymorphic blending

attack. This is an attack that also has the ability to evade a payload statistics-based

anomaly detector, by making each attack instance appear normal, transforming the

CHAPTER 3. TRAINING DATASET SANITIZATION 47

payload characteristics such that they fit the normal model used by the AD system.

This attack was used against PAYL for both 1-gram and 2-gram distributions and

it succeeded in evading it. For this type of attack, if the AD sensor by itself can

be evaded, the training dataset sanitization will at least introduce another level of

indirection for the attacker, while the long lasting training attack would still need

to be addressed. As a response to the blending attack, Wang et al. [109] propose

the use of randomized models/testing in order to defeat the mimicry attacks. Their

randomized models technique assumes the use of a secret partition of the data streams

for the modeling phase, which increases the overhead of the sensor. The randomized

testing proposes to randomly partition packets into several substrings or subsequences

and test each of them separately. Even if they use methods for coping with mimicry

attacks, their sensor is still sensitive to non-sanitized data and long-lasting training

attacks.

System call based anomaly detectors confront with automatic mimicry attacks[47],

defined as a variation of the traditional mimicry attack which is able to hijack a pro-

gram execution flow, execute malicious system call-free code, relinquish the execution

flow to the diverted program to regain it later on. This attack was devised against

host based AD systems like pH [92]. Bruschi et al. [9] propose a way to defeat this

type of attack by using static analysis techniques (through the Interprocedural Con-

trol Flow Graphs) which can localize critical regions inside a program. The code is

instrumented such that the integrity of dangerous code pointers is monitored and any

unauthorized modification is restored with legal values. The problem of this defensive

mechanism is represented by the accuracy of the static analysis phase performed on

x86 binaries, which can lead to high false positive and negative rates.

CHAPTER 3. TRAINING DATASET SANITIZATION 48

3.5 Summary

Due to recent advances in polymorphic attacks, we believe that the research commu-

nity should make a concerted effort to revive the use of content–based anomaly detec-

tion as a first-class defensive technique. To that end, we introduce a novel sanitization

technique that significantly improves the detection performance of out-of-the-box AD

sensors. We are the first to introduce the notion of micro-models: models of “nor-

mal” trained on small slices of the training data set. Using simple weighted voting

schemes, we significantly improve the quality of unlabeled training data by making

it as “attack-free” and “regular” as possible. Our approach is straightforward and

general, and we believe it can be applied to a wide range of unmodified AD sensors

(because it interacts with the training data rather than the AD algorithm) without

incurring significant additional computational cost other than in the initial training

phase.

The experimental results indicate that our system can serve both as a stand-alone

sensor and as an efficient and accurate online packet classifier using a shadow sensor.

Furthermore, the alerts generated by the “sanitized” AD model represent a small

fraction of the total traffic. The model detects approximately 5 times more attack

packets than the unsanitized AD model. In addition, the AD system can detect

more threats both online and after an actual attack, since the AD training data are

attack-free.

CHAPTER 4. AUTOMATED DEPLOYMENT OF AD SENSORS 49

Chapter 4

Automated Deployment of AD

Sensors

4.1 Why Automated Deployment for AD Sensors?

A major hurdle in the deployment, operation, and maintenance of AD systems is the

calibration of these sensors to the protected site characteristics. Currently, AD sensors

require human operators to perform initial calibration of the training parameters to

achieve optimal detection performance and minimize the false positives. AD sensors

can help counter the threat of zero-day and polymorphic attacks; however, the reliance

on user input is a potential roadblock to their application outside of the lab and into

commercial off-the-shelf software. In this chapter we take a number of steps towards

AD sensors that enable true hands-free deployment and operation.

4.1.1 Overview

In chapter 3 we presented our novel sanitization technique that significantly improves

the performance of AD sensors. The necessary parameters in the sanitization process

were determined empirically in order to achieve the optimal operation points. Here,

our aim is to automatically determine the values of the critical system parameters that

CHAPTER 4. AUTOMATED DEPLOYMENT OF AD SENSORS 50

are needed for training using only the intrinsic properties of existing behavioral data

from the protected host. To that end, we address the training stage and calibration

of the AD sensor. We use an unlabeled, and potentially dirty sample of the training

set to construct micro datasets. On one hand, these datasets have to be large enough

to generate models that capture a local view of normal behavior. On the other hand,

the resulting micro-models have to be small enough to fully contain and minimize

the duration of attacks and other abnormalities which will appear in a minority of

the micro datasets. To satisfy this trade-off, we generate datasets that contain just

enough data so that the arrival rate of new traffic patterns is stable. The micro-models

that result from each data set are then engaged in a voting scheme in order to remove

the attacks and abnormalities from the data. The voting process is automatically

adapted to the characteristics of the traffic in order to provide separation between

normal and abnormal data.

4.1.2 Contributions

Our target is to create a fully automated protection mechanism that provides a high

detection rate, while maintaining a low false positive rate. In chapter 3, we have

explored the problem and proposed the sanitization techniques using empirically de-

termined parameters. We also presented a shadow sensor architecture for consuming

false positives (FP) with an automated process rather than human attention.

Here, we apply those insights to the problem of providing a run-time framework

for achieving the goals stated above. While the sanitization process presented in

chapter 3 did not require a manually cleaned data set for training, it relied on em-

pirically determined parameters and human-in-the-loop calibration methods. Along

these lines, the automated approach provides the following contributions:

• Identifying the intrinsic characteristics of the training data, such as the arrival

rate of new content and the level of outliers (i.e. self-calibration)

CHAPTER 4. AUTOMATED DEPLOYMENT OF AD SENSORS 51

• Cleansing a data set of attacks and abnormalities by automatically selecting

an adaptive threshold for the voting method presented previously based on the

characteristics of the observed traffic resulting in a sanitized training data set

(i.e. automatic self-sanitization)

4.2 Self-Calibration using Time-based Partitions

In chapter 3, we focused on methods for sanitizating the training data sets for AD

sensors. This resulted in better AD sensor performance (i.e. higher detection rate

while keeping the false positives low). Here, we attempt to fully automate the con-

struction of those models by calibrating the sanitization parameters using the intrinsic

properties of the training data.

We recall that the inherent assumption of our work is that attacks and abnormal-

ities are a minority compared to the entire set of training data. This is certainly true

for training sets that span a long period of time. Therefore, we proposed the use of

time-delimited slices of the training data as presented in section 3.1.1. Previously,

all micro-datasets had the same empirically determined time granularity value. In

this chapter the granularity value is automatically determined for each micro-dataset.

Then, models are built using any chosen AD algorithm for each micro-dataset. We

reinforce the fact that we treat the AD sensor as a black box whose first task is to

output a normality model for a data set provided as input.

4.2.1 Model Stability

A key parameter of our automated sanitization method is the selection of the optimal

time granularity. Intuitively, choring a smaller value of the time granularity g always

confines the effect of an individual attack to a smaller neighborhood of micro-models.

However, excessively small values can lead to under-trained models that also fail to

capture the normal aspects of system behavior. One method that ensures that the

CHAPTER 4. AUTOMATED DEPLOYMENT OF AD SENSORS 52

micro-models are well-trained is based on the rate at which new content appears in

the training data [109]. This has the advantage of relying exclusively on intrinsic

properties of the training data set. By applying this analysis, we can then identify

for each mdi the time granularity that ensures a well-trained micro-model and thus

attaining a balance between the two desiderata presented above.

We consider the training data set as a sequence of high-order n-grams (therefore a

stream of values from a high-dimensional alphabet). When processing this data, for

any time window twi, we can estimate the likelihood Li of the system seeing new n-

grams, and therefore new content, in the immediate future based on the characteristics

of the traffic seen so far:

Li =
ri

Ni

, (4.1)

where ri is the number of new unique n-grams in the time window twi and Ni is the

total number of unique n-grams seen between tw0 and twi.

Assuming that the data processed by the system is not random, the value of Li

decreases much faster than the time necessary to exhaust the space of possible n-

grams. We are interested in determining the stabilization point for which the number

of new grams appears at a low rate, thus looking for the the knee of the curve. In order

to detect the stabilization point, we use the linear least squares method over a sliding

window of points (in our experiments we use 10 points) to fit a line, L′

i(t) = a + b ∗ t.

When the regression coefficient b approaches zero (0), we consider that the input has

stabilized as long as the standard deviation of the likelihood is not significant. In our

experiments, we discovered that we can relax the above assumptions to an absolute

value lower than 0.01 for the regression coefficient b while the standard deviation of

the likelihood is less than 0.1. The time interval between tw0 and twi is then set as

the desired time granularity for computing the micro-models as described above.

CHAPTER 4. AUTOMATED DEPLOYMENT OF AD SENSORS 53

0 1500 3000 4500 6000 7500 9000
0

0.2

0.4

0.6

0.8

1

Time (s)

lists
www1
LLS lists
LLS www1

0 12000 24000 36000 48000 60000 72000 84000
0

0.2

0.4

0.6

0.8

1

Time (s)

Li
ke

lih
oo

d
of

 s
ee

in
g

ne
w

 g
ra

m
s

a) b)

Figure 4.1: Time granularity detection(|tw| = 600s): a) first 10 micro-models (after

each model, L is reset); b) zoom on the first model

4.2.2 Analysis of Self-Calibration Parameters

Our experimental corpus consists of 500 hours of real network traffic from each of

two hosts, www1 and lists (details about the hosts were presented in chapter 3, sec-

tion 3.2.2). Like before, we partitioned the data into three separate sets: two used for

training and one used for testing. The first 300 hours of traffic in each set was used

to build micro-models. Figure 4.1 shows the granularity detection method used to

characterize both data sets. Figure 4.1 (a) presents the time granularity for the first

ten micro-models. L is reset immediately after a stabilization point is found, and we

begin to generate a new model. At a first glance, both sites display similar behavior,

with the level of new content stabilizing within the first few hours of input traffic.

However, they do not exhibit the same trend in the likelihood distribution, Lwww1

presenting more fluctuations. Figure 4.1 (b) presents a zoom on the first micro-model

time granularity detection. The solid lines show the evolution of the Li likelihood

CHAPTER 4. AUTOMATED DEPLOYMENT OF AD SENSORS 54

metric over time(we use n-grams of size n=5). The dotted lines show the linear least

squares approximation for the stabilization value of twi, which is used to compute

the time granularity gi.

0 20 40 60 80 100 120
0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4

Micro−model index

T
im

e
gr

an
ul

ar
ity

 (
s)

www1
lists

Figure 4.2: Automatically determined time granularity

Figure 4.2 illustrates the automatically generated time granularities over the first

300 hours of traffic for both www1 and lists. The average value for www1 is g = 8562s

(≈ 2 hours and 22 minutes), while the standard deviation is 1300s (≈ 21 minutes).

For lists the average time granularity is g = 8452s (≈ 2 hours and 20 minutes), while

the standard deviation is 819.8s (≈. 13 minutes). In the next section, we will present

an extensive comparison between the performance of the sanitized models that use

the automated parameters versus the ones built using the empirically determined

parameters.

CHAPTER 4. AUTOMATED DEPLOYMENT OF AD SENSORS 55

4.3 Adaptive Training and Self-Sanitization

As presented in chapter 3, once the micro-models are built, they are used, together

with the chosen AD sensor, as a classifier ensemble. A given network packet, which

is to be classified as either normal or anomalous, can be tested, using the AD sensor,

against each of the micro-models. Then, a voting scheme is invoked and a score is

associated with the packet. In the previous chapter, we observed that the weighted

voting strategy performs slightly better than the simple voting, so throughout this

chapter we will use the weighted voting scheme. The final label of the packet is

determined based on the value of the voting threshold, V(see section 3.1.2 for details).

4.3.1 Voting Threshold Detection

Our goal is to automatically determine the voting threshold, V . In order to establish

an effective value for it, we must first analyze the impact of the voting threshold

on the number of packets that are deemed normal. The extreme values have an

obvious effect: a threshold of V = 0 (very restrictive) means that a packet must be

approved by all micro-models in order to be deemed normal. In contrast, a threshold

of V = 1 (very relaxed) means that a packet is deemed as normal as long as it is

accepted by at least one micro-model. In general, for a given value Vi we define P (Vi)

as the number of packets deemed as normal by the classifier (SCORE(Pj) < Vi).

The behavior of this function for intermediate values of Vi is highly dependent on

the particular characteristics of the available data. For a particular data set, we

can plot the function P (V) by sampling the values of V at a given resolution; the

result is equivalent to the cumulative distribution of the classification scores over the

entire data set. This analysis can provide insights into three important aspects of our

problem: the intrinsic characteristics of the data (number and relevance of outliers),

the ability of the AD sensor to model the differences in the data, and the relevance

of the chosen time granularity.

CHAPTER 4. AUTOMATED DEPLOYMENT OF AD SENSORS 56

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

Voting threshold V

P
er

ce
nt

ag
e

of
 p

ac
ke

ts
 d

ee
m

ed
 a

s
no

rm
al

 (
%

)

1−hour
2−hour
3−hour
6−hour
24−hour
48−hour
100−hour

Figure 4.3: Impact of the voting threshold over the number of packets deemed as

normal for different time granularities

To illustrate this concept, we will use as an example the www1 data set and the

Anagram [109] sensor. Figure 4.3 shows the result of this analysis for time granularity

ranging from 1 to 100 hours. We notice that, as the time granularity increases, the

plot “flattens” towards its upper limit: the classifier loses the ability to discriminate

as the micro-models are fewer in number and also more similar between themselves.

We also notice that for V very close to 1, all the plots converge to similar values; this

is an indicator of the presence of a number of packets that are highly different from

the rest of the data in the set.

Intuitively, the optimal voting threshold V is the one that provides the best sepa-

ration between the normal data class and the abnormal class. The packets that were

voted normal for V = 0 are not of interest in the separation problem because they

CHAPTER 4. AUTOMATED DEPLOYMENT OF AD SENSORS 57

are considered normal by the full majority of the micro-models and the choice of V

does not influence them. So the separation problem applies to the rest data for which

V > 0; thus, we normalize P (V) as follows:

p(Vi) =
P (Vi)− P (0)

P (1)− P (0)
(4.2)

The separation problem can be now considered as the task of finding the smallest

threshold (minimize V) that captures as much as possible of the data (maximize

p(V)). Therefore, if the function p(V)− V exhibits a strong global maximum, these

two classes can be separated effectively at the value that provides this maximum.

We have applied this method to both data sets considered in this chapter, using

Anagram. The profiles of both p(V) (solid lines) and p(V) − V (dotted lines) are

shown in Figures 4.4 and 4.5. In each case, we have marked the value of V that

maximizes p(V) − V . In both graphs, the maximum of p(V) − V corresponds to a

“breaking point” in the profile of p(V) (in general, any changes in the behavior of

p(V) are identified by local maxima or minima of p(V)− V). The value of the global

maximum can be interpreted as a confidence level in the ability of the micro-model

classifier to identify outliers, with larger values indicating a high discriminative power

between the normal data and the abnormalities/attacks. A low value (and therefore

a profile of p(V) following the x = y line) shows that the two classes are not distinct.

This can be indicative of a poorly chosen time granularity, an AD sensor that is

not sensitive to variations in the data set, or both. We consider this to be a valuable

feature for a system that aims towards fully autonomous self-calibration: failure cases

should be identified and reported to the user rather than silently accepted.

Once the value of the voting threshold V has been determined, the calibration

process is complete. We note that all the calibration parameters have been set au-

tonomously based exclusively on observable characteristics of the training data. The

process can therefore be seen as a method for characterizing the combination of AD

sensor - training data set, and evaluating its discriminative ability.

CHAPTER 4. AUTOMATED DEPLOYMENT OF AD SENSORS 58

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

Voting threshold

p(V)
p(V)−V

V=0.35

Figure 4.4: Determining the best voting threshold for www1

4.3.2 Analysis of Self-Sanitization Parameters

To evaluate the quality of the models built using the automatically determined san-

itization parameters, we compare their performance against the performance of the

sanitized models built using empirically determined parameters. There is a funda-

mental difference between the two types of models: for the first one the sanitization

process is completely hands-free, not requiring any human intervention, while for the

latter, exhaustive human intervention is required to evaluate the quality of the mod-

els for different parameter values and then to decide on the appropriate parameter

values.

There are two parameters of interest in the sanitization process: the set of values

for the time granularity and the voting threshold. We will therefore compare the

models built using empirically determined parameters against the models built using:

CHAPTER 4. AUTOMATED DEPLOYMENT OF AD SENSORS 59

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Voting threshold

p(V)
p(V)−V

V=0.02

Figure 4.5: Determining the best voting threshold for lists

• a fixed time granularity and automatically determined voting threshold;

• automatically determined time granularities and fixed voting threshold;

• both time granularity and voting threshold determined automatically.

Figures 4.6 and 4.7 present the false positive and detection rates for models built

using different sanitization parameters. The traffic contains instances of phpBB forum

attacks (mirela, cbac, nikon, criman) [84] for both hosts that are analyzed. Each line

shows the results obtained as the voting threshold was sampled between 0 and 1,

with the granularity value either fixed at a given value (usually 1, 3 or 6 hours) or

computed automatically using the method described earlier.

We note that the time granularity values empirically found to exhibit high per-

formance were 1-, 3- and 6-hour for www1, respectively 3-hour for lists. For each of

CHAPTER 4. AUTOMATED DEPLOYMENT OF AD SENSORS 60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.08

0.1

0.12

0.14

0.16

F
P

 r
at

e
(%

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

Voting threshold

D
et

ec
tio

n
ra

te
 (

%
)

auto gran

1−hour

3−hour

6−hour

fully auto

1−hour auto th

3−hour auto th

6−hour auto th

Figure 4.6: Model performance comparison for www1: automated vs.empirical

these values, we analyzed the performance of the models built with an automatically

determined voting threshold. For each line representing a given granularity value, the

triangular markers represent the results obtained with the automatically determined

voting threshold. We observe that the voting threshold is placed in the safety zone for

which the 100% detection rate is maintained for both www1 and lists, while exhibiting

a low false positive rate (< 0.17%).

In the case of automated time granularity (the actual values are presented in fig-

ure 4.2), we initially explored the performance of the models determined for different

values of the voting threshold, ranging from 0 to 1, with a step of 0.1. In figure 4.6,

for the same fixed threshold, the detection rate is 94.94% or 92.92% compared to the

3-hour granularity (empirical optimal - 100%), while maintaining a low false posi-

tive rate (< 0.17%). In figure 4.7, the results are almost identical to the empirically

determined optimal (3-hour granularity).

When we use both the set of time granularities and the voting threshold deter-

mined automatically, the system is fully autonomous. In figures 4.6 and 4.7, this is

CHAPTER 4. AUTOMATED DEPLOYMENT OF AD SENSORS 61

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

F
P

 r
at

e
(%

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

Voting threshold

D
et

ec
tio

n
ra

te
 (

%
)

3−hour

auto gran

3−hour auto th

fully auto

Figure 4.7: Model performance comparison for lists: automated vs.empirical

indicated by replacing the triangular marker with a star-shaped one. Table 4.1 also

summarizes the values of false positive (FP) and true positive (TP) for the fully auto-

mated sanitized model, the empirical optimal sanitized model and the non-sanitized

model. With automated parameters, for lists we achieve the same values as in the

case of empirically determined parameters, while for www1 the values differ, but we

observe that in the absence of the sanitization process the detection rate would be 0.

The most important aspect is that the fully-automated sanitization still significantly

improves the quality of the AD models while setting its parameters based only on the

intrinsic characteristics of the data and without any user intervention.

4.4 Summary

In this chapter, we studied the potential performance issues that stem from fully

automating the AD sensors’ day-to-day maintenance and calibration. Our goal is to

CHAPTER 4. AUTOMATED DEPLOYMENT OF AD SENSORS 62

Table 4.1: Empirically vs. automatically determined parameters

Parameters www1 lists

FP(%) TP(%) FP(%) TP(%)

N/A(no sanitization) 0.07 0 0.04 0

empirical 0.10 100 0.10 100

fully automated 0.16 92.92 0.10 100

remove the dependence on human operator using an unlabeled, and thus potentially

dirty, sample of incoming traffic.

To that end, we proposed to enhance the training phase of AD sensors with a

self-calibration phase, leading to the automatic determination of the optimal AD

parameters. We showed how this novel calibration phase can be employed in con-

junction with our training data sanitization method, resulting in a fully automated

AD maintenance cycle. Our approach is completely agnostic to the underlying AD

sensor algorithm. We verified the validity of our approach through a series of ex-

periments where we compared the manually obtained optimal parameters with the

ones computed from the self-calibration phase. Modeling traffic from two different

sources, the fully automated calibration shows a 7.08% reduction in detection rate

and a 0.06% increase in false positives, in the worst case, when compared to the

optimal empirically determined parameters.

CHAPTER 5. MODEL UPDATES 63

Chapter 5

Model Updates

In the previous chapters we presented different approaches for improving the perfor-

mance of AD sensors while automating their deployment. In this chapter, we address

another critical point that AD sensors are faced with: maintaining the quality of

models in the presence of changes in the modeled system behavior. The way users in-

teract with systems can differ and evolve over time, as can the systems themselves [26].

Consequently, as AD models capture the normal behavior of systems, they need to

be updated when legitimate changes are introduced in this behavior. We define this

process of adapting the model to behavior changes as model update.

To the best of our knowledge, the two main current approaches to the problem

of AD model updates are: (1) fully retraining the AD sensor, and (2) incorporat-

ing a mechanism for gradual, online retraining into the AD algorithm itself. The

first approach seems unsatisfactory because retraining the model may take significant

amounts of time, and it represents an additional burden on system administrators. If

a patch is generated and deployed automatically (due to an automatic defense mecha-

nism), delays introduced by a long retraining period appear to defeat one of the main

purposes of automated defense: the ability to respond with little or no human super-

vision at speeds comparable to that of the attack. This phase may simply re-learn

large amounts of behavior that have not changed. Unfortunately, these problems may

CHAPTER 5. MODEL UPDATES 64

discourage operators from employing an AD sensor in the first place.

The latter approach (i.e., online, gradual retraining) incrementally updates the

AD parameters (e.g.thresholds, smoothing window length) and instance selection (i.e

the process of deciding whether or not to add a point to the model) to adapt to

changes in the system behavior [52]. User behavior and access patterns can change

in response to social demands not anticipated by the authors of the training phase.

Thus, the AD algorithm needs to continuously incorporate new data (e.g., input data

such as network traffic or data summarizing behavioral patterns, such as sequences

of system calls) into its “normal” model and to adjust its parameters and decisions.

In section 5.1, we propose a novel online learning technique that incorporates our

sanitization and automation methods, maintaining the performance level of the AD

sensors over a long time horizon. We employ an aging mechanism for the micro-model

selection while updating the sanitization parameters. In our complete validation study

(section 5.1), we show that our online approach is suitable for changes that are caused

by external factors (e.g. changes in the users’ behavior) which cannot be controlled,

but the effect of their actions can be observed; we refer to it by the name of progressive

model update. Our approach is agnostic to the underlying AD sensor, making for a

general framework.

We also introduce specialized approaches to the problem of AD model update,

which alter the model only when the AD sensor is notified of possible legitimate

changes in the modeled system behavior, as opposed to the continuous fashion ap-

proach. We call this type of update induced model update, as they are performed

in response to a controlled change of the operating environment. We consider three

entities that need to be monitored for changes as they are internal factors that de-

termine the behavior of the system (unlike user actions discussed above, which we

consider an external factor): file systems (FS), databases (DB) and software patches.

We assume that the changes in these three entities are non-malicious (other security

mechanisms might be necessary) and that the monitoring system has direct access to

CHAPTER 5. MODEL UPDATES 65

them, and in some cases, can add information to them. Our goal is to harness the

fact that patches, especially security–related ones, cause small, localized changes in

the underlying AD model, thus only the affected areas need to be updated. On the

other hand, the file system and database exhibit a certain granular structure (contain

files, tables, etc.) that can be exploited in order to create multi-granular modeling

techniques that can be updated only in the affected areas. Therefore, if we can pro-

vide an automated mechanism that efficiently incorporates changes into the existing

model, we can avoid a lengthy retraining phase. For the FS/DB case, we introduce

a monitoring systems that notifies the AD system of any changes that appear in the

two entities. If the anomaly detector system models the data that resides in a system

at a granular level, then a section that is changed implies only a small change in the

overall model.

Users

AD Sensor

Progressive
model update

I nduced
model update

File
system

Database

Patch

Figure 5.1: AD model update architecture

We analyze the case of patches (section 5.4) separated from the file systems and

databases (section 5.3), because there is a very distinctive difference between the two

approaches: for patches the changes are in the code section while for file systems

and databases they appear in the data section. For the FS/DB case, we present a

feasibility study along with a set of base-line results, while for the patch case, we

CHAPTER 5. MODEL UPDATES 66

present a feasibility study, leaving room for future explorations.

5.1 Self-Update AD Models

The normal behavior of a system can be viewed as the set of possible legitimate inputs.

Over time the inputs can change without control on the system side, while still being

legitimate, and consequently the behavior of the system changes. For example, a

web page or video suddenly becomes popular due to posting on slashdot or YouTube.

This type of changes appear gradually without any internal control, but they can

be observed. We need to find methods that allow the AD model to accommodate

changes in the system’s behavior when there is no way of controlling the changes that

occur in the system.

In chapters 3 and 4, we presented a method that generates automatically self-

calibrated and self-sanitized AD models. As the protected system evolves over time,

the sensor’s internal state becomes more and more inconsistent with the protected

site. These discrepancies between the initial normality model and the current system

behavior eventually render the AD sensor unusable. Therefore, the models need to

adapt to this phenomenon, usually referred to as concept drift. As shown in [52],

online learning can accommodate changes in the behavior of computer users. Here,

we also propose to use an online learning approach to cope with the concept drift, in

the absence of ground truth.

Our objective is to maintain the performance level of the automated AD sensors

over a medium or long time horizon, as the behavior of the protected site undergoes

changes or evolution. This is not an easy task [86] because of the inherent difficulty in

identifying the rate of change over time for a particular site. However, we can “learn”

this rate by continuously building new micro-models (as presented in chapters 3 and 4)

that reflect the current behavior of the system: every time a new model is added to

the voting process, an old model is removed in an attempt to adapt the normality

CHAPTER 5. MODEL UPDATES 67

model to the observed changes. Without this adaptation process, legitimate changes

in the systems are flagged as anomalous by the AD sensor leading to an inflation of

alerts.

The main contribution presented in this section is maintaining the performance

we gained by applying the sanitization methods (see chapters 3 and 4) beyond the

initial training phase and extending them throughout the lifetime of the sensor by

continuously updating the self-calibrated and self-sanitized model (i.e. self-update).

Our approach is to continuously create micro-models and sanitized models that

incorporate the changes in the data. An aging mechanism is applied in order to limit

the size of the ensemble of classifiers and also to ensure that the most current data

is modeled. When a new micro-model, µMN+1 is created, the oldest one, µM1, is no

longer used in the voting process (see figure 5.2). The age of a model is given by the

time of its creation.

µMN+ 1µM1 µM2 µMNµM3 µM4 µMN-1… … … .
µMN+ 1

Figure 5.2: Online learning aging the oldest micro-model

Every time a new micro-model is generated, a new sanitized model is created as

well. For the online sanitization we will use what we call introspection: the micro-

models are engaged in a voting scheme against their own micro-datasets1. This alter-

native gives us the ability to apply the self-sanitization processes in an online fashion,

without having to also maintain a second dataset strictly for model creation. When

a new sanitized model is built, it is immediately used for testing the incoming traffic

until a new sanitized model is built.

Concept drift appears at different time scales and our micro-models span a par-

ticular period of time. Thus, we are limited in observing drift that appears at scales

1We recall that we define a micro-dataset as the training dataset used for building a micro-model.

CHAPTER 5. MODEL UPDATES 68

that are larger than the time window covered by the micro-datasets. Any changes

that appear inside this time window are susceptible to being rejected by the voting

process rather than being accepted as legitimate evolution of the system. In our on-

line sanitization experiments we use 25 classifiers in the voting process (covering ≈

75 hours of real time traffic) such that we can adapt to drifts that span more than

75 hours of traffic.

We cannot distinguish between a legitimate change and a long-lasting attack that

slowly pollutes the majority of the micro-models. A well-crafted attack can potentially

introduce malicious changes at the same or even smaller rate of legitimate behavioral

drift. As such, it can not be distinguished using strictly introspective methods that

examine the characteristics of traffic. However, the attacker has to be aware, guess,

or brute-force the drift parameters to be successful with such an attack. In chapter 6,

we will present a different type of information that can be used to break this dilemma:

model data from a network of collaborative sites.

5.1.1 Self-Update Model Evaluation

To illustrate the self-update modeling, we first apply the online sanitization process

for the first 500 hours of traffic (presented as our experimental corpus in chapter 3)

using Anagram as the base sensor. Figures 4.2 and 5.3 present the fully automated

sanitization parameters: the time granularity for each micro-model used in the cre-

ation of the new sanitized models, respectively the voting threshold for each newly

created sanitized model.

If we didn’t employ a model update mechanism, a sanitized model would be built

only once. Thus, we refer to the first sanitized model as the static sanitized model.

Because in the online sanitization process the models change continuously, we call

them dynamic sanitized models. To analyze how the online sanitization performs,

in figures 5.4 and 5.5 we compare the static sanitized model alert rate against the

dynamic sanitized models alert rate for www1.

CHAPTER 5. MODEL UPDATES 69

0 25 50 75 100 125 150 175
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sanitized model index

V
ot

in
g

th
re

sh
ol

d
V

www1
lists

Figure 5.3: Automatically determined voting threshold for www1 and lists

Figure 5.4 presents the total number of alerts for each micro-dataset tested with

both the static and dynamic models. We first notice that, for a few micro-dates, the

alert rate reaches levels up to 30% for both model types. After analyzing the alert

data, we determined that the high alert rate was generated not by abrupt changes in

the system’s behavior, but rather by packets containing binary media files with high

entropy. This type of data would be considered anomalous by AD sensors such as

Anagram. Thus the recommendation is to divert all the media traffic to specialized

detectors which can detect malicious content inside binary media files. Figure 5.5

presents the alert rate after ignoring the binary packets. We can observe that there

is no significant difference between the alert rate exhibited by the static and dynamic

sanitized models. Thus we can conclude that there are no fundamental changes over

the 500 hour period.

In terms of performance, table 5.1 presents both the false positive rate (including

the binary packets) and the detection rate for www1 and lists. Abrupt changes in the

CHAPTER 5. MODEL UPDATES 70

Figure 5.4: Alert rate for www1: both binary and ascii packets

voting threshold (as shown in figure 5.3) determine the creation of more restrictive

models, thus the increase in the detection rate and/or the false positive rate. For

www1 the signal-to-noise ratio (i.e. TP/FP) is improved from 155.21 to 158.66, while

for lists it decreases from 769.23 to 384.61.

Table 5.1: Static model vs. dynamic models alert rate

Model www1 lists

FP(%) TP(%) FP(%) TP(%)

static model 0.61 94.68 0.13 100

dynamic models 0.62 98.37 0.26 100

We then investigated concept drift appearing at larger scale such as weeks and

months, as opposed to days. For this, we tested our method for traffic from the same

site, collected at months difference. Figures 5.6 and 5.7 present the alert rate for

both static and dynamic models, with and without the binary packets. Vertical lines

CHAPTER 5. MODEL UPDATES 71

Figure 5.5: Alert rate for www1: ascii packets

mark the boundary between new and old traffic. We can observe that when changes

happen in the system, the alert rate increases for both static and dynamic models.

After the dynamic models start updating to the new data, there is a drop in the alert

rate, back to levels below 1%. For the static model, the alert rate stays at about 7%,

demonstrating the usefulness of a self-updating sanitization process.

Figure 5.8 presents the raw number of alerts that our system returns on an hourly

basis. We note that spikes in the number of alerts can render manual processing

difficult, especially when there are changes in the system under protection and the

models gradually adapt to the new behavior. However, manual processing of alerts

is not the intended usage model for our framework; our ultimate goal is to build a

completely hands-free system that can further identify the true attacks from the false

positives. Our study of computational performance presented in 3.3 shows that, with

the shadow sensor architecture, the false positives can be consumed automatically

and neither damage the system under protection nor flood an operational center with

alarms.

CHAPTER 5. MODEL UPDATES 72

Figure 5.6: Concept drift detection for www1 - alert rate for both binary and ascii

packets. Vertical line marks the boundary between new and old traffic

5.1.2 Computational Performance Evaluation

To investigate the feasibility of our online technique we have to analyze the computa-

tional overhead that it implies. Ignoring the initial effort of building the first batch of

micro-models and the sanitized model, we are interested in the overhead introduced

by the model update process. Table 5.2 presents a breakdown of the computational

stages of this process.

The overhead has a linear dependency on the number and the size of the micro-

models. For www1, we used 25 micro-models per sanitization process and the size

of a micro-model was on average 483 KB (trained on 10.98 MB of HTTP requests).

The experiments were conducted on a PC with a 3GHz Intel(R) Xeon(R) CPU with

4 cores and 16G of RAM, running Linux. This level of performance is sufficient for

CHAPTER 5. MODEL UPDATES 73

Figure 5.7: Concept drift detection for www1 - alert rate for ascii packets. Vertical

line marks the boundary between new and old traffic

Table 5.2: Computational performance for the online automated sanitization for

www1

Task Time to process

build and save a new micro-model 7.34 s

test its micro-dataset against the older micro-models 1 m 12 s

test the old micro-datasets against the new micro-model 1 m 58 s

rebuild and save the sanitized model 3 m 03 s

monitoring and updating models on the two hosts that we tested in this section, as

it exceeds the arrival rate of HTTP requests. In the case of hosts displaying higher

traffic bandwidth, we can also exploit the intrinsic parallel nature of the computations

in order to speed up the online update process: multiple datasets can be tested against

multiple models in parallel, as the test for each dataset-model pair is an independent

CHAPTER 5. MODEL UPDATES 74

0 50 100 150 200
0

50

100

150

200

250

300

350

400

450

Micro−dataset index

N
um

be
r

of
 A

S
C

II
al

er
ts

 p
er

 h
ou

r

dynamic san models
static san model

Figure 5.8: Number of ASCII alerts per hour for www1. The vertical line marks the

boundary between new and old traffic

operation. In future work, we will implement a parallel version of this algorithm to

test these assumptions.

5.1.3 Micro-Models Clustering

As mentioned above, our sanitization technique can introduce a delay until the san-

itized model accurately represents the new behavior of a system when this changes.

In order to minimize this delay, we propose for future work the use of fewer micro-

models in the voting technique, by clustering similar micro-models. After clustering

the micro-models, the model that is most recent in a specific cluster is used in the

voting process. For example, as shown in figure 5.9, if models µM1, µM3 and µMN

were clustered in cluster c1, we propose to use in the voting process, the most re-

cent model, i.e. µMN . We will call the most recent model in a cluster the cluster

representative micro-model.

CHAPTER 5. MODEL UPDATES 75

µM1 µM2 µM3 µM4

c
1

c
2

c
1

c
3

c
1

c
2c

3

µMN-2 µMN-1 µMN

Figure 5.9: Clustering the micro-models

This approach implies also the fact that we will use a different voting technique.

The two techniques presented in chapter 3 will be augmented with two new ones,

which will take into account similarities between the micro-models. In order to create

the sanitized model, labels are generated for each packet tested against each cluster

representative micro-model and then used in the voting scheme, which generates a

final score per tested packet.

SCORE(Pj) =
1

W

N∑

i=1

wc
i · Lj,i (5.1)

where wc
i is the weight assigned to the cluster representative micro-model M c

i and

W =
∑N

i=1
wc

i . Here the previously presented simple voting method becomes a

weighted voting method which assigns to each cluster representative micro-model M c
i a

weight wc
i equal to the cardinality of the cluster ci. The previously presented weighted

voting method assigns to each cluster representative micro-model M c
i a weight wc

i

equal to the sum of numbers of packets used to train all the micro-models in cluster

ci.

5.2 Error-Response Feedback for Self-Update

As presented above, our self-update technique allows the AD sensor to adapt to

changes in the protected system without any access to ground truth information.

In this section we discuss a mechanism that uses partial labels of a given training

datatset. This mechanism identifies as abnormal input data the input for which

which the system under protection gives an error response (ER). This is data for

CHAPTER 5. MODEL UPDATES 76

which the system acknowledges the inability to respond “normally”. It is then labeled

as abnormal, not used in the sanitization process and encapsulated in the abnormal

model.

Our approach aims to address error response feedback for web servers, but it

can also be applied to other services as well. A web server returns an error for a

malformed request or a request that it can not locate. It is important to note that

this technique is not foolproof. As Reynolds et al.[83] remarked, a server that is

successfully attacked can respond with success, while a server which is not vulnerable

to the same attack will respond with an error code. Based on this observation, they

leveraged the software diversity to detect attacks based on disagreements between

the responses of diverse servers. However, by encapsulating the requests for which

the server returns an error in abnormal models, we can still gain better view of the

traffic the server expects to handle, and thus in turn improve its normality model.

Before we proceed to the implementation details and the experimental evaluation

for the online sanitization in conjunction with the error response feedback mechanism,

we present the type of error codes that an HTTP server can return. We distinguish

between two types of error responses:

• HTTP error 4xx, 5xx: the 4xx codes are intended for client errors and they

are the most common errors. The 5xx indicate the cases in which the server

is aware that it encountered an error [105]. The error pages themselves can be

customized;

• application specific errors: the error pages that originate with the web applica-

tion when one of the above errors appear or other specific formatting/specifi-

cations enforced by the application itself are violated. Figure 5.10 exemplifies

both types of error responses.

CHAPTER 5. MODEL UPDATES 77

File Not Found

The requested URL was not found on this web server:

/~gcre

@cs.columbia.edu seems the most likely maintainer of that page.

Other solutions:

You may find what you need by performing a search in the main index for this web site.

You can perform a Google search on the departmental pages.

This Columbia University Computer Science web server, www.cs.columbia.edu,

is maintained by [no address given]

(a)

(b)

Figure 5.10: Examples of error pages: (a) HTTP server error page customized for

this application; (b) application-specific error page

CHAPTER 5. MODEL UPDATES 78

5.2.1 Implementation Details

We had two alternatives to identify the HTTP requests that return error codes: to

instrument the application in order to communicate them directly to the AD sensor or

to compare the server responses against a pre-determined set of possible error pages.

We chose the second solution as it is less invasive for the application. First, we had to

identify the possible error pages for any given web application. Again we considered

the case of manual vs. automatic processing. For small sites, it is usually possible

to determine the error responses by manually targeting the server with bad requests.

For larger sites, it becomes unfeasible to determine the error pages manually. For

this purpose, we developed an Error Response (ER) WebCrawler that extracts all

possible cases of error responses for a given web server. The ER WebCrawler starts

from the main web page and stores all the links in the page and then uses a breadth

first search algorithm to extract all possible pages. Every link is modified using a

fuzzing process [65; 90]:

• for static pages, the URL is appended with a random string;

• for dynamic pages, the fuzzing is done at two different levels: the name of a

variable is randomly changed while its value is kept unmodified, and the name

of a variable is kept unchanged and the value is randomly changed.

The next step was to implement a TCP flow reconstruction tool to extract HTTP

request/response pairs. Given an HTTP request, its correspondent HTTP response is

compared against the extracted error responses using the longest sub-sequence algo-

rithm. Depending on the comparison result, the incoming traffic is further redirected

to the sanitization process or is used as training data for the abnormal model.

5.2.2 Experimental Evaluation

In this section we analyze the impact that the error response filtering mechanism has

on the online sanitization process. For our experiments we used approximately 85

CHAPTER 5. MODEL UPDATES 79

hours of real traffic for www1 (i.e. the second dataset used in section 5.1.1), for which

we had access to both incoming and outgoing traffic.

In order to perceive the significance of traffic reduction introduced by the error

response filtering process, we analyzed the volume of error responses that www1 exhib-

ited. We considered a 24-hour window time (380,052 network packets) for a detailed

analysis. Figure 5.11 considers an hourly basis approach illustrating an approximate

6% rate of error responses out of the total number of HTTP responses. The ER

WebCrawler detected six types of error pages for www1, two of them being “File Not

Found” and “Access Forbidden”

10PM 12AM 2AM 4AM 6AM 8AM 10AM 12PM 2PM 4PM 6PM 8PM 10PM
0

1

2

3

4

5

6

Time intervals

P
er

ce
nt

ag
e

of
 r

es
po

ns
es

 d
ee

m
ed

 a
s

er
ro

rs
(%

)

File Not Found
Access Forbidden

Figure 5.11: Percentage of error responses out of total number of responses for 24

hours on www1

To continue our investigation, we applied the online sanitization process on the

given dataset with and without the filtering process. Figures 5.12 and 5.13 present

the automatically determined time granularity and voting threshold for the online

sanitization with and without the error response filtering. We can observe that, for

both sanitization parameters, there are a number of differences. We conjecture that

CHAPTER 5. MODEL UPDATES 80

0 5 10 15 20 25 30 35
6000

7000

8000

9000

10000

11000

12000

13000

Micro−model ndex

T
im

e
gr

an
ul

ar
ity

 (
s)

without error filter
with error filter

Figure 5.12: Automatically determined time granularity with and without error

filtering for www1

the malformed requests changed the distribution of normal data in the micro-models,

as they are not necessary similar to normal requests, and they constantly present

in the traffic, as figure 5.11 shows. Table 5.3 presents the number of false alerts

raised in both cases. With the error filtering in place, the sanitized models exhibited

a smaller false alert rate as the models became denser and better characterize the

normal content that the HTTP server receives.

Table 5.3: Error response filtering vs. no error response filtering

w/o error response w. error response

false alerts 181 120

CHAPTER 5. MODEL UPDATES 81

1 2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

0.25

Sanitized model index

V
ot

in
g

th
re

sh
ol

d
V

without error filter
with error filter

Figure 5.13: Automatically determined voting threshold with and without error

filtering for www1

5.3 FS/DB-based AD Model Update

In this section, we propose to explore web techniques, in which we can cope with

concept drift by relying on the internal state of the file system and database. Al-

though these techniques attempt to address the content and behavioral changes in

web servers, they can also be applied to other applications as well including Voice

over IP (VoIP) servers.

A web server provides either content from the file system or dynamically gen-

erated content that interacts with databases through SQL queries(see figure 5.14).

Legitimate changes that happen on the file system and in the back-end databases are

reflected in the HTTP server responses. An AD model of the behavior will self-update

using these changes. Another important aspect is that the replies of the web server

have to be consistent with the file system and database content when no changes are

made to any of them.

Our solution uses completely different training and self-updating methods for stat-

CHAPTER 5. MODEL UPDATES 82

HTTP server SQL server

Database

request

replyresponse

query

File

system

Figure 5.14: Front-end and back-end correlation for web server model update

ically and dynamically generated web pages. For the case of static replies, the overall

model of the application maps each possible URL request with the sub-model rep-

resentation of the correspondent file that resides in the file system and is returned

by the web server. When changes are made in the file system only the sub-models

of the changed files are altered. If a file is removed than the AD model drops the

information about it. If a file is changed, its sub-model is updated. Otherwise, if a file

is added its sub-model is built and mapped to the right URL request. In the testing

phase, the URL requests that are sent to the server have to match requests from the

model and also the replies of the server have to match the replies in the model that

are mapped to the requests. This approach guarantees that only legitimate requests

can be made to the server.

For the case of dynamic replies, sub-models corresponding to a particular script

file (e.g. index.php) can be generated for both the HTTP requests and HTTP replies.

The initial models can be trained using a sanitized training dataset (presenting no

attacks) generated with our sanitization tool for anomaly detection. When a new

request is sent to the web server, it can be first correlated with the SQL query that is

generated by the HTTP server, to ensure that the correct information is asked from

the SQL server. Another correlation is performed between the SQL reply and the

HTTP reply based on the assumption that information returned by the database has

to be reflected in the HTTP reply. When new data is introduced to the file system or

CHAPTER 5. MODEL UPDATES 83

to the database, the changes have to be reflected in the two types of sub-models by

altering only them accordingly. We speculate that even if the content is dynamically

generated there will be common content between pages generated by the same script

with different parameters, while part of the different content will be related to the

data returned by the database. An attacker must use a great deal more effort to

fashion a mimicry attack if we compute different models for each script file.

5.3.1 Feasibility Study

In our proof-of-concept implementation, we first created the notification system. For

notifying the AD sensor of any file system alterations, we used inotify-tools [63], a

library and set of command-line programs for Linux providing a simple interface to in-

otify (a Linux kernel subsystem that provides file system event notification). Table 5.4

presents an example of the use of inotifywait tool, that monitors the current direc-

tory and detects that the file database changes.txt has been modified. The output

of inotifywait can be parsed such that we can distinguish between file modification,

deletion and creation. In order to detect alterations on the file systems related to

web pages returned by a web server, we propose to recursively monitor the directory

where the web site resides.

For the database notification system we used the MySQL triggering mechanism. A

trigger is a named database object that is associated with a table, and that activates

when a particular event occurs for the table [71]. In order to be able to track all the

changes appeared in the database, we propose the use of a mirrored database that

is populated with new information when the triggers are activated. The mirrored

database is checked by our notification system in order to determine the type of

changes that were incurred in the system. The mirrored database and the triggers

are generated automatically by parsing the original database. Table 5.5 shows an

example of a trigger definition. We first create a mirror of the table info, called

metadata info. Aside from the columns in info, we add one more column, flag, that

CHAPTER 5. MODEL UPDATES 84

Table 5.4: Example of the inotify-tool use to capture the changes in the current direc-

tor. The file database changes.txt is modified while inotifywait is running. inotifywait

outputs the changes on the file system.

$ inotifywait -m -r -e MOVE -e MODIFY -e DELETE .

Setting up watches. Beware: since -r was given, this may take a while!

Watches established.

./ MOVED FROM database changes.txt

./ MOVED TO database changes.txt

./ MODIFY database changes.txt

./ MODIFY database changes.txt

./ DELETE .#database changes.txt

stores the type of alteration that was made in the database (0, if it is an insert).

When an insert is made in info, table metadata info is also populated so that the

notification system can check the flag. Once the data is processed by the AD sensor,

the flag is reset to a neutral value.

Once the notification systems are in place, the AD sensor is informed of any

changes that happen on the file system or in the database and processes them ac-

cordingly. For our experiments we considered the www1 host, the case of static files

and two types of modeling the file content, keeping either the hash value of a file

(md5 in our case) or the set of all the n-grams extracted from the byte content of

a file (an Anagram model). We are interested in evaluating three different aspects:

how fast the multi-granular updating process is, how much space the models require

and how the false positive rate is improved by the multi-granular updating process.

Figure 5.15 presents the training cost in the case of the two network-based anomaly

detection systems used before: Anagram (both standalone and coupled with the

training dataset sanitization technique) and Payl.

CHAPTER 5. MODEL UPDATES 85

Table 5.5: Example of a trigger definition. MySQL trigger definition for an insert

event on a table info. First a mirrored table is created adding a state flag to it as

well. When an insert event occurs the mirrored table is also populated with the

inserted elements and the flag is set accordingly.

CREATE TABLE metadata info LIKE info;

ALTER TABLE metadata info ADD COLUMN flag TINYINT;

DELIMITER |

CREATE TRIGGER insert info trigger AFTER INSERT ON info

FOR EACH ROW

BEGIN

INSERT INTO metadata info SET metadata info.email=NEW.email,

metadata info.abstract =NEW.abstract, [.......],

metadata info.flag=0; // flag ==0 if insert

END;|

DELIMITER ;

For the same web server, www1, for which we created the Payl and Anagram

models, we considered our multi-granular model approach. Figure 5.16 presents the

initial effort in building the multi-granular models. For our experiments we built n-

grams models for the html and htm files and for the rest of the static files we used the

md5 hash models. Table 5.6 presents the space and time constrains in order to create

the initial model for all the files requested in a 24-hour time frame (12GB of data

on the file systems; also we only had access to 23,879 static files on the web server

to do our evaluation). As expected, the n-gram approach requires more time and

space than the md5 hashes. The reduction in space utilization for the md5 hashes is

significant, but the number of unique grams is also significantly lower than the total

number of grams over all files (see figure 5.17).

CHAPTER 5. MODEL UPDATES 86

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

x 10
4

Training data set size (hours)

T
im

e
to

 tr
ai

n
(s

ec
on

ds
)

Anagram
Payl
Angaram + sanitization

Figure 5.15: Time to train an AD sensor for different training data set size. For the

case of Anagram+sanitization, we present the initial effort of building the first batch

of micro-models and the sanitized model

Table 5.6: Time and space constraints for building multi-granular models

Type Number of files Space Time

n-gram 6,345 22.64 bytes / 5-gram 0.136µs / 5-gram

md5 17,534 32 bytes / file 0.033µs / byte

total 23,879 590 MB 8 min 31.22 s

In order to analyze how our system performs in terms of the updating process,

we tested the multi-granular model against real incoming traffic (24 hours of traffic,

380,052 network packets). The processing was not done at the packet level, as it was

for the case of Payl and Anagram, but at the flow level. To this end, we implemented

a TCP flow reconstruction tool to extract the request/response pair. As our model

maps all the possible requests to the sub-models representing each file in the file

CHAPTER 5. MODEL UPDATES 87

0 0.5 1 1.5 2 2.5

x 10
4

0

100

200

300

400

500

600

Monitored file system size (number of files)

T
im

e
to

 tr
ai

n
(s

ec
on

ds
)

n−gram + md5
md5
n−gram

Figure 5.16: Time to train our multi-granular model. We have n-gram models for the

html and htm files and md5 models for the rest of the static files.

system, it correctly identified all legitimate HTTP responses to legitimate HTTP

requests. Alerts were raised for requests that didn’t have a correspondent file on the

file system or were malformed. For the n-gram approach the testing phase takes 16.08

µs / 5-gram on average, including the time to load the n-gram sub-models, while for

the hash-based approach, testing a byte of data is done in 2 µs.

5.4 Post-Patch Model Update

Our goal in this section is to analyze the feasibility of building a mechanism that

provides enough information to update a given host-based AD model after a patch

is installed. The main assumption is that, if the patch employs only minor tweaks,

translation proxies, or shim code, than then it seems possible to construct an AD

model update procedure that inflicts small changes in the model.

CHAPTER 5. MODEL UPDATES 88

5 15 25 35 45 55 65 75 85 95
0

200

400

600

800

1000

1200

Percentage of unique grams per file (%)

N
um

be
r

of
 fi

le
s

Figure 5.17: Histogram of percentage of unique grams out of the total number of

grams in the files

The key problem for post-patch model update is translating from a static descrip-

tion of the expected change in behavior (as expressed by the patch as a change in

the software) to the dynamic description of events contained in the model (the model

is built while an application is executed). In order to make this discussion concrete,

we define a basic, straightforward context window AD model that contains aspects

of both data and control flow.

The model employs a context of m function instances to predict the occurrence of

other function instances. That is, the model can be logically represented as a table

of entries of the form:

{fi(args, rval), . . .} → {fk(args, rval)} (5.2)

The conditional probability of fk occurring with a particular set of arguments

argsk and return values rvalk is based on the proceeding context of m (which can

vary) functions2. The simplest case is based on monitoring only sequences of system

2Although we restrict our examination to a host–based model, examining the impact that patches

CHAPTER 5. MODEL UPDATES 89

call names or numbers for each process. Modeling both the system calls and the

arguments to those calls allows the model to improve its granularity. In addition,

we can model library and application function calls and their parameters. One way

to model the relationship between calls and arguments is to calculate the aggregated

conditional probabilities between specific calls and arguments as presented by Stolfo

et al.[98].

While it may be fairly straightforward to adjust control flow based directly on the

information contained in a patch (e.g., an insertion or removal of a function call),

characterizing changes to the data sets representing the arguments or return values

represents a more challenging task, and some pathological cases exist. For exam-

ple, the dynamic behavior of a patch might be such that the application processes

a completely different distribution of input data or produces radically different out-

put data. Entries in the model for functions that process such data may now have

outdated character distribution models or constraints for their arguments. Arbitrary

and widespread behavioral changes will likely perturb the model beyond our ability

to micro–patch it. In these cases, simply retraining by replaying a “sanitized” input

archive may represent the best option.

We make the simplifying assumption that security–critical patches do not widely

perturb the model or constraints on data arguments. Our examination of patches in

the next section bears this hypothesis out. However, in cases where dataflow does

drastically change between “known” data distributions, we may be able to automati-

cally or manually annotate the model patch with these change types. A model patch

can be bootstrapped from the patch text, then improved manually or via symbolic

execution — in this case, manually improving the model patch and applying it will

still likely result in a faster update of the model rather than complete retraining.

have on n-gram based network content models is an interesting area for future work.

CHAPTER 5. MODEL UPDATES 90

5.4.1 Feasibility Study

Our evaluation contains two assessments. First, we review some anomaly and specification–

based sensors to discover their supervised or unsupervised training time. We do so to

confirm our hypothesis that such systems have relatively long training periods that

occasionally require significant user input or supervision (in the previous sections we

discussed mostly network based AD sensors, here the focus is on host-based sensors).

In some cases, including Systrace [81] and modern PC firewalls that employ a user–

driven training mode, supervision can span hours or weeks. Second, we summarize

the changes in data and control flow enacted by a series of security–critical patches.

Cost of Training

We can classify training cost based on two broad categories: supervised and un-

supervised. An unsupervised training phase usually requires several thousand of

requests. Moreover, some host–based detection systems impose an additional one–

time overhead due to static analysis. Furthermore, when a host–based sensor em-

ploys dynamic analysis, there is also a per–request latency that can lead to sev-

eral hours of offline training. Supervised AD systems require user input to drive

the training process. In such systems, it is very difficult to quantify the effort re-

quired to train the system since it depends on user activity. It is clear, however,

that such systems require input from multiple users over a long period of time [81;

33] before they can generate a normality model capable of differentiating between

normal and abnormal behavior.

Security Patch Survey

A patch can affect a behavioral model by changing either or both the control and data

flow. Examples of changes in control flow include updating, removing, or introducing

new decision control structures; introducing a new child function; or inserting a new

parent function (e.g., a sanity check on input parameters). Changes in data flow

CHAPTER 5. MODEL UPDATES 91

include adding new variables or symbolic values; adding or removing arguments or

function parameters; and modifications to the set of possible return values. We note

that our examination is strictly static: it does not execute the patches. In addition,

we do not distinguish between macros and function calls.

Table 5.7 lists our results for a variety of applications, including stunnel [100],

some web servers [35; 74; 2], linux [55], cvs [18] and fetchmail [82], as well as various

vulnerabilities in libpng [69], Firefox [46], and Samba [88]. The ∆s are computed by

counting the number of control and data flow changes as defined in tables 5.8 and 5.9.

Table 5.7: Survey of patches. We list the vulnerable version of an application, the size

of a patch in lines (including comments), and the changes in data and control flow

introduced by the patch, as listed above. The magnitude of the difference between the

changes and the application’s total size supports the notion that patches introduce

relatively confined model updates.

Application Patch Size (lines) control flow ∆ data flow ∆

Linux-2.4.19 20 3 1

ghttpd-1.4 16 4 5

nullhttpd-0.5.0 12 2 1

stunnel-3.21 29 0 3

libpng-1.2.5 98 10 12

cvs-1.11.15 81 1 2

Apache-1.3.24 11 0 1

fetchmail-6.2.0 183 1 5

Samba (CVE-2004-0882) 65 0 7

Samba (CVE-2004-0930) 386 99 39

Firefox-2.0.0.3 22 8 0

As our results would infer, we conjecture that most security–critical patches enact

CHAPTER 5. MODEL UPDATES 92

Table 5.8: Control flow changes introduced by patches

Control Flow Changes

- new decision control structures

- new decision conditions

- new child functions

- replacement of a function

- insertion of parent (like a sanity check)

- jump to error handler case

Table 5.9: Data flow changes introduced by patches

Data Flow Changes

- new variables

- new arguments

- deleted arguments

- new return values

- deleted return values

small changes to the system that only affect or invalidate correspondingly small parts

of an application’s behavioral model. If this hypothesis is correct, then it seems pos-

sible to construct an AD model update procedure that derives the necessary changes

from the text of a patch itself 3. The key challenge is to notify the AD about a patch

in terms that it understands: changes in control and data flow. This challenge is the

essence of automatic post-patch AD model update.

3We can utilize the actual patching procedure to recover the context of the changes and a limited

form of parsing or symbolic execution to gather information about data flow changes.

CHAPTER 5. MODEL UPDATES 93

A Model Update Procedure

Most of the control flow changes we observed resulted from invocations of new func-

tions as well as the insertion of new if statements or updates of if conditions. Most

data flow changes involved new arguments to function calls, or new ways of wrapping

those arguments, as well as new return statements that introduced new values. A

majority of the patches we examined made very minor changes; for example, the

patch to ghttpd substitutes the use of a “safe” library function and derives the value

of a new argument for that call. The patch for nullhttpd introduces a new if state-

ment and condition with a call to an application function to log an error (presumably,

the dynamic behavior also involves the invocation of the library printf() family of

functions and the write() system call). We can use a parsing and symbolic execu-

tion phase to learn and summarize these implicit changes. We envision generating

model patches in a format similar to source code patches like those produced by diff.

Model patches contain update summaries to the conditional probability entries in the

model, along with changes to the format of the arguments and insertion and removal

of functions from a call chain.

5.5 Summary

As the system under protection evolves over time its behavior becomes more and

more inconsistent with the AD model, eventually rendering the AD sensor unusable

if the model is not updated. To amend this, we proposed two different approaches:

progressive model updates and induced model updates. The first one consists of an on-

line learning technique that progressively updates the normal model while integrating

our sanitization and automation methods. This technique is general and can adapt

to legitimate changes that the users infer on the system, aside from changes in the

system itself. For the second approach, changes in the AD models are induced by

changes observed internally in the system through, but not limited to, three entities:

CHAPTER 5. MODEL UPDATES 94

file systems, databases and software patches. These changes are assumed to affect

only certain regions in the model, which can be isolated and treated separately in the

updating process. This method is specialized for certain scenarios (e.g. web server,

software changes etc.) and assumes that the AD mechanism has direct access to the

monitored entities through a notification mechanism.

In the case of progressive updates, the adaptation process consists of re-generating

new time granularity and voting threshold values and also creating new normality

models (using new and older micro-models in the voting process), which we refer to as

“dynamic” models. We have shown that, without this adaptation process, legitimate

changes in the systems are flagged as anomalous by the AD sensor leading to an

inflation of alerts. Over a very large time window, our dynamic model generation

maintains a low alert rate (1%) as opposed to a 7% for a system without updates.

For the induced updates, we analyzed the case of file systems and databases inde-

pendently from the case of patches. We first investigated the feasibility of automati-

cally deriving and applying a “model patch”, based on information related to alter-

ations in the file system and database. We presented baseline results on how to update

a sensor that monitors the request and response messages for non-dynamic HTTP re-

quests. The results showed that, by using a multi-granular modeling technique, we

can achieve fast initial training along with fast automatic updating phase triggered by

the notification system that monitors both the file system and the database. In ad-

dition, we proposed extensions for dynamic, database–driven requests and responses.

Second, we investigated the feasibility of automatically deriving and applying a dif-

ferent type of model patch that describes the changes introduced by a code patch

installation. We examined 11 security–critical patches to obtain an idea of how to

summarize the data and control flow changes necessary to update a behavioral model

and proposed a model update procedure. For future work, we intend to implement

this model update procedure for different host–based AD sensors.

CHAPTER 6. AD MODEL EXCHANGE 95

Chapter 6

AD Model Exchange

As presented in chapters 3, 4 and 5, AD models’ performance can be improved by

sanitizing their training datasets, AD sensors can be automated by determining their

operational parameters using the intrinsic characteristics of the system under pro-

tection and, last but not least, AD models can be updated such that they adapt to

changes in the system behavior. In this chapter, we expand the notion of automated

AD optimization to include collaboration between multiple systems.

The key benefit of Collaborative Security [95; 75; 89; 48; 73; 103] to intrusion de-

tection is “a better view of global network attack activity” [57], as opposed to the

single site view. By leveraging the location diversity of collaborating sites, a more

precise model of an attacker’s behavior and intent can be provided. Commercial

companies [37] are now offering distributed security collaborative systems of the sort

proposed several years ago by Locastoet al. [57]. Other examples of organizations em-

ploying a collaborative approach to defense include the Department of the Treasury

and the FSISAC, leveraging the talent and resources of the financial community to

protect the community as a whole. The DISA/DoD manages and leverages informa-

tion from its many customer .mil hosts, while universities with hundreds of divisions

and units across schools and departments also follow this model.

However, existing work mostly focuses on sharing alerts triggered by different

CHAPTER 6. AD MODEL EXCHANGE 96

intrusion detection systems. While the exchange of alerts can successfully improve

the capabilities of detecting distributed or multi-stage attacks and, in some cases,

reduces the false positive rate, there are scenarios for which this solution might not

be suitable or optimal. Consider a dynamic environment in which nodes continuously

enter and leave the network; an alert exchange mechanism is not suitable for such a

short span environment. Another method for communicating the state of each live

node is necessary. For a centralized alert exchange mechanism, a large volume of

alerts can be overwhelming, thus the need of reducing or synthesizing the volume of

alerts. An alternative approach is to exchange AD models, which have the ability

to characterize any normal or malicious/abnormal behavior as IDS alerts can be

synthesized in the models. We are interested in the protection gain achieved when

AD models are shared in order to provide a global view on potential threats or

environment specific normal behavior.

6.1 Contributions

For our model exchange applications, we analyze environments with different con-

straints. In the first scenario, we assume that the collaborative sites fully trust each

other and that the identities of individual collaborators are not known to the outside

world. In this case, the collaborating sites exchange models of bad behavior that are

used locally to further improve the data sanitization process. Even if the identities of

the collaborating sites become known, attacking all the sites with targeted or blend-

ing attacks is a challenging task. The attacker will have to generate mimicry attacks

against all collaborators and blend the attack traffic using the individual sites’ normal

data models.

The second model exchange application proposes a modeling approach to charac-

terize application behavior, where models are shared between different applications

under the assumption of application diversity. This infrastructure measures the ca-

CHAPTER 6. AD MODEL EXCHANGE 97

pability of a modeling technique to capture the specific behavior of each application

based on the return values exhibited with each run.

The common trait between these approaches is the exchange and corroboration of

AD models. However, before a collection of models can be used in a sharing paradigm

between sites, devices, hosts or applications, a set of operations needs to be defined

that allows extracting the significant information from the exchanged models. In the

next section, we will establish a set of possible operations that can be applied on any

two given models, and for our applications, we will use them accordingly. The goal

is to create a general framework for model operations that can also be suitable for

future model exchange approaches.

The main contributions presented in this chapter are the following:

• first, we formalize a set of tools for model operations that can be utilized in

AD model exchange scenarios. Different AD model operations have been used

by the research community, but no unified set of possible operation has been

provided.

• second, we introduce and analyze different model exchange applications for

which the AD model exchange process provided a significant improvement over

the single site use in the collaborative environment.

6.2 AD Model Operations

AD model operations have been used in the literature [5; 30; 29; 68; 41], but no formal

classification was ever made over all possible operations. In this section we present a

general set of operations, which have either a new model or a score as the final result.

Defining such a set is not a trivial task, given that every operation, when applied on

a model type, needs to be adapted to the model’s internal structure, thus the need

of considering two versions of each operation:

CHAPTER 6. AD MODEL EXCHANGE 98

• a direct version, that can be applied to models that allow a direct operation, i.e.

given two models, there is a direct translation from them to a new model/score

that represents the operation result;

• an indirect version, that applies for the case of more complex models, e.g. prob-

abilistic or statistical models, for which the model operations cannot be applied

analytically, but indirectly. In this scenario, the two input models are used in a

testing phase over a dataset, T (e.g. either one of the datasets used for training

the given models or a new one). We treat the AD sensors that correspond to the

models as black boxes, and base our results on the agreements/disagreements

on the tested data points. This version could potentially require a higher com-

putational overhead than the direct approach. However, the additional effort is

offset by the general applicability of the operations, placing no restrictions on

the inner modeling technique used by each sensor.

6.2.1 Model Aggregation

The first operation defines the notion of model aggregation. Given two models M1 and

M2, trained using the same AD algorithm, we want to construct a new model that

represents the aggregate between the two of them. Thus, we combine the character-

istics of the two models in order to construct a model that represents both behaviors.

The result is a new model, Maggr. For example, in the case of Anagram models, the

aggregated model contains all the n-grams present in both input models. In case the

models are complex and they do not permit the direct operation, their aggregation

can be defined indirectly, by generating a new training dataset for the result model,

Taggr (see table 6.1).

Maggr = M1

⋃
M2 (6.1)

CHAPTER 6. AD MODEL EXCHANGE 99

where M1 = AD(T1), M2 = AD(T2) and T1 and T2 are training datasets used for

training the models.

Table 6.1: Indirect Model Aggregation. Taggr contains all the data points that were

deemed normal by either of the models.

routine indirectAggregation(T , M1, M2)

Taggr ← {}

for all di in T

if 1=test(di, M1) or 1=test(di, M2)

Taggr ← di ∪ Taggr

Maggr ← AD(Taggr)

return Maggr

6.2.2 Model Intersection

The second operation defines the notion of model intersection. Given two models M1

and M2 trained using the same AD algorithm we want to construct a new model

that represents the common behavior between the two of them. Thus we intersect

the characteristics of the two models in order to construct a model that represents

the common behavior. The result is a new model, Mint. For example, in the case

of Anagram models, the intersection model contains the common n-grams between

the two input models. In case the models do not permit the direct operation, the

intersection can be defined indirectly as presented in table 6.2.

Mint = M1

⋂
M2 (6.2)

where M1 = AD(T1), M2 = AD(T2) and T1 and T2 are training datasets used for

training the models.

CHAPTER 6. AD MODEL EXCHANGE 100

Table 6.2: Indirect Model Intersection. Tint contains all the data points that were

deemed normal by both models.

routine indirectIntersection(T , M1, M2)

Tint ← {}

for all di in T

if 1=test(di, M1) and 1=test(di, M2)

Tint ← di ∪ Tint

Mint ← AD(Tint)

return Mint

6.2.3 Model Differencing

Another operation defines the notion of model differencing. Given two models M1

and M2 trained using the same AD algorithm we want to construct a new model

that represents the behavior of one, but not the other one. Thus we difference the

characteristics of the two models in order to construct a model that represents the

difference behavior. The result is a new model, Mdiff . For example, in the case

of Anagram models, the difference model would contain only the n-grams that are

present in M1, but not in M2. In case the models do not permit the direct operation,

the intersection can be defined indirectly as shown in table 6.3.

Mdiff = M1 −M2 (6.3)

where M1 = AD(T1), M2 = AD(T2) and T1 and T2 are training datasets used for

training the models.

CHAPTER 6. AD MODEL EXCHANGE 101

Table 6.3: Indirect model differencing.Tdiff contains all the data points deemed nor-

mal by M1 and abnormal by M2

.

routine indirectDifferencing(T , M1, M2)

Tdiff ← {}

for all di in T

if 1=test(di, M1) and 0=test(di, M2)

Tdiff ← di ∪ Tdiff

Mdiff ← AD(Tdiff)

return Mdiff

6.2.4 Model Similarity

We now define an operation that doesn’t have as a result a model: model similarity.

Given two models M1 and M2, trained using the same AD algorithm, we want to

determine how similar the models are to each other. This is a means of deciding if two

different behaviors that are represented by the models have the same characteristics.

The result is a similarity score, sim1,2, with bounds depending on the used distance

metric (normalization might be applied). For example, in the case of Anagram models,

the similarity metric can be the number of common n-grams among the two input

models. There is also a indirect version of this operations presented in table 6.4.

sim1,2 = dist(M1, M2) (6.4)

where M1 = AD(T1), M2 = AD(T2) and T1 and T2 are training datasets used for

training the models.

Based on the previous operation, we can expand the list of model operations to

model clustering. If data points can be assigned to different clusters so that data

points in the same cluster are similar, the same procedure can be applied to models.

CHAPTER 6. AD MODEL EXCHANGE 102

Table 6.4: Indirect model similarity. sim1,2 counts how many times the two models

agree. This metric can be normalized by defining the percentage of agreements out

of the total number of tested data points.

routine indirectSimilarity(T , M1, M2)

sim1,2 = 0

for all di in T

if (1=test(di, M1) and 1=test(di, M2)) or

(0=test(di, M1) and 0=test(di, M2))

sim1,2 = sim1,2 + 1

return sim1,2

Each cluster contains models that characterize similar behaviors.

6.3 Model Exchange for Cross-sanitization

Chapter 3 noted that our local sanitization architecture has a weakness in the presence

of long-lasting training attacks in the training data. Because attacks of this type may

span multiple micro-models, a large portion of the micro-models might be poisoned.

Since we predicate our cleaning capability on micro-model voting, extensive poisoning

of the training data would seriously deteriorate our ability to detect long-lived or

frequently occurring attack payloads. We hypothesize, however, that the distribution

of such long-lived attacks among Internet hosts would require an adversary with

significant resources (e.g., a potentially large number of source IP addresses) — a

requirement that effectively limits the scope of such attack to few target hosts or

networks.

Given this hypothesis, we can counter the effects of such attacks by extending

our sanitization mechanism to support sharing models of abnormal traffic (or an

CHAPTER 6. AD MODEL EXCHANGE 103

alert model) among collaborating sites. Sharing these models enables a site to re-

evaluate its local training data1. Our goal is to enhance the local view of abnormal

behavior characteristics (rather than normal behavior characteristics, which cannot

be meaningfully shared because they are unique to an individual site). As we will

show, cross-sanitization between sites boosts our ability to remove long-lived or fre-

quent attacks from the training data (regardless of whether or not the attack data is

“targeted”, i.e., injected specifically to blind the sensor).

In some sense, attack vectors that saturate training data define normal traffic pat-

terns. Local knowledge alone may not provide enough evidence to weed out consistent

attack vectors in training data. To isolate and remove these vectors, we need to in-

corporate knowledge from some other remote source. This information sharing is the

essence of cross-sanitization: comparing models of abnormality with those generated

by other sites (see full architecture in figure 6.1).

Cross-sanitization compares models of abnormality because normal models are

tightly coupled with an individual site’s traffic. In contrast, the consistency of char-

acteristics of abnormal packets across sites can help filter out attacks that saturate

the training data. Individual sites can utilize this external knowledge to cross-sanitize

their training set and generate a better local normal model.

For an attacker to successfully blind each sensor in this type of environment, she

would need to identify each collaborator and launch the same training attack on

all participating sites for the same time period. Accomplishing this goal requires a

significant amount of knowledge and resources. Even in the case of botnets exhibiting

the same behavior with a footprint of up to 350,000 infected machines, as reported

by Dagon et al. [19], a botnet training attack would still impose a significant cost in

terms of resources on the attacker side, given that a botnet training attack is akin

to a probing attack. If the same resource is used against multiple collaborators, they

1To alleviate the privacy concerns of sharing content, these models may incorporate privacy-

preserving representations [75].

CHAPTER 6. AD MODEL EXCHANGE 104

Cross-sanitization

Site X Site Y

Local models Local models

diff diff

Figure 6.1: Cross-sanitization architecture. The local sanitized and abnormal models

are produced as shown in figure 3.1. In the cross-sanitization the difference operation

is applied between the local sanitized model and the remote abnormal model.

may notice common source IPs of potential botnet members and become aware of the

attack. Therefore, we postulate that when a particular site experiences a targeted

training attack, the attack data will not appear at all collaborating sites at the same

time. As a result, with a large enough group of collaborators, some fraction of sites

will have seen the attack, but will not have had their model corrupted by it. In

this case, sharing abnormal models helps cleanse the local models of sites in the

group that have been corrupted. When a site with sanitized model Msan receives the

abnormal models Mabn1
. . .MabnM

from its collaborators, it needs to apply the model

differencing operation to compute a new model, Mcross.

Mcross = Msan −
⋃
{Mabni

} (6.5)

CHAPTER 6. AD MODEL EXCHANGE 105

where Msan is the locally sanitized model and Mabni
are the remote abnormal models

exchanged between collaborators.

The differencing of models may be applied either directly or indirectly across sites,

depending on the particular AD algorithm in use and the specific representation of

the model.

Polymorphic attacks present a special challenge because each propagation attempt

will display a distinct attack vector that may be captured in different abnormal mod-

els. We conjecture, however, that a polymorphic attack targeting a single site can

still be captured by the local sanitization scheme as presented in section 3.4.1.

Although direct/indirect cross-sanitization can help identify abnormal samples

that have poisoned a site, we must take care during this process. We conjecture

that sites may exhibit content diversity (i.e., they do not experience identical traffic

flows); thus an abnormal model from site B may include some common but ultimately

legitimate data from site A. In other words, data items that are indeed normal for a

particular site can be considered abnormal by others. If site A attempts to identify

abnormal content in its local model using cross-sanitization with site B, then A may

incorrectly remove legitimate data patterns from its model along with truly abnormal

or malicious data patterns. Doing so increases the false positive rate — an increase

that may not be matched by an increase in detection rate.

An alternative approach to reconciling different models or disagreements between

models involves the use of a shadow server. When the sanitized model and an abnor-

mal model disagree on the label of a packet (for example, the sanitized model labels

it normal and the abnormal one as abnormal), we redirect the traffic to the shadow

server to determine if the packet causes a real attack. Based on this information

the packet is used in the construction of either the local sanitized model or the local

abnormal model.

CHAPTER 6. AD MODEL EXCHANGE 106

6.3.1 Evaluation

This section shows that even if local sanitization fails to detect an attack, we can

compensate by using the external information received from other collaborating sites.

Furthermore, we show that the performance of the local architecture remains unaf-

fected when faced with polymorphic attacks. The experiments in this section use

the Anagram sensor and the traffic from the previously presented hosts, www, www1,

and lists (see chapter 3), and were conducted on a PC with a 2GHz AMD Opteron

processor 248 and 8G of RAM, running Linux.

We will assume that at least some of the collaborative sites are poisoned by a

long lasting training attack, while others were able to filter it and use it for building

the abnormal model. If the targeted site receives an abnormal model that contains

an attack vector, the local sanitized model can be “cross-sanitized” by removing

the common grams between the two models (direct cross-sanitization). Given the

diversity in content exhibited by different sites, the same gram can be characterized

differently by different sites. Therefore, it is possible that after cross-sanitation the

sanitized model becomes smaller. As an immediate consequence, the false positive

rate will increase.

We consider all the possible cases in which each of our three hosts model is poi-

soned by each of the four attacks present in our data. When one site is poisoned,

we consider that the other two are not. Every poisoned host receives the abnormal

models Mabn of its peers in order to cross-sanitize its own model, Mpois. Table 6.5

presents the average performance of the system before and after cross-sanitization

when using direct and indirect cross-sanitization.

In the case of direct operations, once the cross-sanitization is done, the detection

rate is improved, but the false positive rate degrades. To further investigate how the

cross-sanitization influences the performance of the local systems, we analyze the size

of the models (presented in Table 6.6).

As Table 6.6 shows, the size of the models has decreased. This decrease leads to

CHAPTER 6. AD MODEL EXCHANGE 107

Table 6.5: Performance when the sanitized model is poisoned and after it is cross-

sanitized when using direct/indirect model differencing

Model
www1 www lists

FP(%)DR(%)FP(%) DR(%)FP(%) DR(%)

Mpois 0.10 44.94 0.26 51.78 0.10 47.53

Mcross

0.23 100 0.70 100 0.16 100
(direct)

Mcross

0.10 100 0.26 100 0.10 100
(indirect)

an increase in the FP rate. As we mentioned before, this behavior is a disadvantage of

our distributed sanitization method, as it depends on site diversity. Furthermore, this

phenomenon provides a potential avenue of attack for an adversarial collaborator. We

consider defending against this type of attack to be out of the scope of our current

efforts, but Byzantine robustness or reputation systems [42] can be applied in the

future. Of course, even appropriately authenticated or otherwise trustworthy peers

could be exploited after they are included in the collaborative network. We note

that dealing with trusted insiders is an inherently hard problem faced by many large-

scale collaborative systems, from anonymity networks to mandatory access control

frameworks.

In order to improve our method for cross-sanitization, we can use the indirect

model operations approach. This approach tests the poisoned local model and the

collaborative abnormal models against the second training dataset used in our local

methodology. The goal of this method is to eliminate the packets responsible for

poisoning the local model from the training data set. As we can observe in table 6.5,

the FP rate has improved and the detection rate remains at 100%. The improvement

of the FP rate is reflected in the size of the cross-sanitized models (see table 6.6).

In terms of computational performance, as expected, the indirect model cross-

CHAPTER 6. AD MODEL EXCHANGE 108

Table 6.6: Size of the sanitized model when poisoned and after cross-sanitization

when using direct/indirect model differencing

Model
www1 www lists

#grams file size #grams file size#gramsfile size

Mabn 2,289,888 47M 199,011 3.9M 6,025 114K

Mpois 1,160,235 23M 1,270,009 24M 43,768 830K

Mcross

1,095,458 21M 1,225,829 24M 37,113 701K
(direct)

Mcross

1,160,006 23M 1,269,812 24M 43,589 828K
(indirect)

sanitization is more expensive than the direct one (see Table 6.7). There is a tradeoff

between how fast the cross-sanitization needs to be done and how high the FP rate

is. If a higher FP rate is allowed, a quicker cross-sanitization can be applied by using

the direct version; otherwise the best solution is the indirect operations.

Table 6.7: Time to cross-sanitize for direct and indirect model operations

Method www1 www lists

direct 13.98s 26.35s 16.84s

indirect 1966.68s 1732.32s 685.81s

6.4 Model Exchange between Applications

The growing sophistication of software attacks has created the need for increasingly

finer-grained intrusion detection systems to improve the overall software protection

mechanisms. This implies moving anomaly sensors beyond the network or even host

level, to monitoring the applications themselves. However, such fine-grained mecha-

CHAPTER 6. AD MODEL EXCHANGE 109

nisms are currently perceived as too expensive in terms of their performance impact,

and questions relating to the feasibility and value of such analysis remain unexplored.

In this section, we attempt to demonstrate the feasibility of building application

profiles at a fine-grained level of detail by analyzing the resulting models’ capability

in discriminating between applications. We apply the model operations framework

presented in section 6.2 to the case of application profiles based on function return

values. We focus on this feature of application behavior because return values help

drive control flow decisions, which in turn define the dynamic characteristics of the

application. Profiles of this type are built at the binary level — that is, without mak-

ing changes to the application’s source code, the operating system, or the compiler.

Such modeling techniques are suitable for an overall system protection mechanism

that monitors each application individually and determines when the system is under

attack.

6.4.1 Implementation and Evaluation

The frequency distributions of return values were captured using a Pin [59] tool

occurring in a selection of real software. These distributions provide insight into both

the micro and macro structure of a return value behavior model. Our analysis aims

to show that return values can reliably classify similar runs of a program as the same

program as well as distinguish between execution models of different programs.

The Pin tool intercepts the execution of the monitored process to record each

function’s return value. The tool builds a table of return value frequencies. After the

run of the program completes, we create a final return value frequency model. As a

proof of concept, a model for a particular monitored process is simple, consisting of

the average frequency distribution over multiple runs of the same program.

We examine two hypothesis dealing with the efficacy of execution behavior profiles

based on return value frequency:

1. traces of the same program under the same input conditions will be correlated

CHAPTER 6. AD MODEL EXCHANGE 110

Table 6.8: Manhattan distance within and between models. The diagonal (shown in

italics) displays the average distance between each trace and the behavior profile de-

rived from each trace of that program. All other entries display the distance between

the execution models for each program. We omit the lower entries because the table

is symmetric. Note the difference between gzip and gunzip as well as the similarity

of gzip to itself.

date echo gzip gunzip md5sum sha1sum sort

date 3.03e+03 3.72e+03 1.61e+07 1.87e+06 6.46e+04 6.47e+04 5.45e+03

echo - 548 1.61e+07 1.87e+06 6.41e+04 6.42e+04 5.43e+03

gzip - - 212.4 1.79e+07 1.61e+07 1.61e+07 1.61e+07

gunzip - - - 1.91e+04 1.92e+06 1.92e+06 1.87e+06

md5sum - - - - 3.03e+04 3.38e+04 6.56e+04

sha1sum - - - - - 1.67e+04 6.57e+04

sort - - - - - - 4.24e+03

with their model;

2. the model of all traces of one program can be distinguished from the model of

all traces of another program.

For the first hypothesis, we use Manhattan distance as a similarity metric in order

to compare each trace of the same process with the return value model of that pro-

cess. In effect, we compare each return value frequency to the corresponding average

frequency among all traces of that program. To evaluate the second hypothesis, we

use the Manhattan distance between each process model. The base set for the return

values consists of all return values exhibited by all processes that are analyzed over

all their runs. Table 6.8 shows how each model for a variety of program types (we in-

clude a variety of programs, like sorting, hashing, simple I/O, and compression) stays

CHAPTER 6. AD MODEL EXCHANGE 111

consistent with itself under the same input conditions (smaller Manhattan distance)

and different from models for each other program (larger Manhattan distance).

Each process has a particular variance with each trace quantified in the similarity

value between its model and the trace itself, but when compared against the rest of

the processes it can be easily distinguished. We ran each program ten times under

the same input profile to collect the traces and generate the model for each program.

We used as input profiles generic files/strings that can be easily replicated (in some

cases no input was needed): date - N/A, echo - “Hello World!”, gzip - httpd-2.2.8.tar,

gunzip - httpd-2.2.8.tar.gz, md5sum httpd-2.2.8.tar, sha1sum - httpd-2.2.8.tar and sort

- httpd.conf (the unmodified config file for httpd-2.2.8).

6.5 Summary

Collaborative security is a powerful concept as it provides an ensemble view of at-

tackers’ intentions by leveraging site/device/application diversity. The process of ex-

changing AD models in a collaborative setting, as described in this chapter, enables

systems to communicate either normal or abnormal/malicious behavior profiles, in

order to improve their protection mechanisms.

The first step towards using AD models in a distributed setting is to formalize a

set of operations that can be applied on the models; these operations can later be

assembled to produce the desired collaborative algorithm:

• model aggregation combines two input models into a model that represents both

behaviors;

• model intersection constructs a model that represents the common behavior

encapsulated in two input models;

• model differencing constructs a new model that represents the behavior of one

of two input models, but not the other one;

CHAPTER 6. AD MODEL EXCHANGE 112

• model similarity provides a measure of the similarity between the behavior pro-

files encapsulated in each of the two input models.

The implementation of these operations depends on the type of AD model. Along

these lines, we distinguish between two categories of sensors. The first one uses mod-

els that allow analytical operations for adding or removing content; we refer to this

implementations as direct operations. Examples include sensors such as Anagram,

where a model can be directly manipulated by adding or removing n-grams. How-

ever, our framework is not restricted to this type of models. In the case of sensors

where analytical operations are not possible, such as the ones producing statistical

or probabilistic models, we have implemented the same set in the form of indirect

operations, treating the sensor as a black box and using an additional data set for

operations. This makes for a general framework, rendering the following results ap-

plicable in a wide variety of environments.

For the first application of model exchange, referred to as cross-sanitization, we

showed that this method can help mitigate the risks of local anomaly detectors being

evaded by targeted training attacks. Our approach is to share models of abnormal

traffic among collaborating sites that can be used to further improve the sanitization

process described in chapter 3. A site can cross-sanitize its local training data based

on the remote models, using the aggregation and differencing operations. Our results

show that if one of the collaborating sites was targeted by the same attack and was

able to capture it in its abnormal model, the detection rate can be improved up to

100% for all the collaborators.

The second application that we present focuses on application-level behavioral

modeling. In this case, AD models are used to confirm that applications conform to

their typical behavior characteristics. This goal requires a method for building be-

havioral profiles that is substantially different from the network-level cases described

before: application profiles are based on the frequency distribution of function return

values. However, the same general principles of AD model corroboration apply. We

CHAPTER 6. AD MODEL EXCHANGE 113

have demonstrated that these models can be shared among a set of real software

applications as they are consistent within a set of multiple application runs, and that

they are discriminative between different applications. Based on the successful appli-

cation of the AD model exchange principles in differnt environments, we conjecture

that the same approach can in the future be generalized for other types of profiling

techniques as well.

CHAPTER 7. CONCLUSION 114

Chapter 7

Conclusion

We have started this study by discussing anomaly detection as a first-class defensive

technique, and a valid alternative to the commonly used signature-based detection

mechanisms. In this thesis, we developed a framework that improves the performance

of content–based AD sensors, making them more easily deployable while maintaining

the vital ability of detecting zero-day or polymorphic attacks. At this point, we

review the contributions of the thesis, summarize the main results and identify what

we believe to be some of the most promising avenues for continuing this work.

7.1 Thesis Summary

Our first step was to introduce a novel data sanitization technique for content–based

AD sensors, using the notion of micro-models as “normal” models trained on small

slices of a training dataset. Using these models in weighted voting schemes, we

significantly improve the quality of unlabeled training data, making it as “attack-

free” and “regular” as possible. As a result, the sensor can use as training data

an unlabeled, and thus potentially dirty, sample of incoming traffic. Our technique

is agnostic to the AD algorithm used, and can therefore be extended to other AD

sensors that model the content of a high volume of streaming data. The next step was

CHAPTER 7. CONCLUSION 115

to further reduce the dependence on human operators, thus making content–based

AD system more easily deployable in real-life scenarios. We enhanced the training

phase of AD sensors to include not only a sanitization phase, but also with a self-

calibration phase that automatically determines the sanitization parameters. Our

results show that the sanitization scheme with automatically determined parameters

achieves comparable results to the case of empirically determined optimal parameters.

To complete the deployment process, we also considered the case in which the

system under protection evolves over time, rendering an AD model unusable unless

modified to adapt to these changes. We proposed two different approaches: progres-

sive model updates and induced model updates. The first one consists of an online

learning technique that progressively updates the normal model while integrating our

sanitization and calibration methods with an aging mechanism for micro-models.

This technique is general and can adapt to legitimate changes in the behavior of the

uses, as well as changes in the system itself. For the second approach, updates of the

AD models are induced by changes observed internally in the system through three

entities: file systems, databases and software patches. These changes are assumed

to affect only certain regions in the AD model, which can be isolated and treated

separately in the updating process. This method is specialized for certain scenarios

(e.g. web server, software changes etc.) and assumes that the AD mechanism has

direct access to the monitored entities through a notification mechanism.

Our view is that AD models can be considered first-class objects that can be ma-

nipulated and communicated. As such, they can also be utilized in a collaborative

security approach which aims to provide an ensemble view of attackers’ intentions

by leveraging site/device/application diversity. As part of this effort, we formalized

the set of operations that can be used to process AD models; we then applied these

operations for algorithms that aim to improve security mechanisms by exchanging

models of either normal or abnormal behavior. We proposed four different opera-

tions: model aggregation, model intersection, model differencing and model similarity.

CHAPTER 7. CONCLUSION 116

We also distinguish between two categories of sensors. The first one uses models

that allow analytical operations for adding or removing content; we refer to these

implementations as direct operations. However, our framework is general and can

also accommodate sensors where analytical operations are not possible (e.g. those

producing statistical or probabilistic models). For these cases we have implemented

the same set in the form of indirect operations, treating the sensor as a black box and

using an additional data set for aggregation based on testing results.

The first application of model exchange that we present, referred to as cross-

sanitization, showed that this approach can help mitigate the risks of local anomaly

detectors being evaded by targeted training attacks. Our approach is to share models

of abnormal traffic among collaborating sites that can use these models to further

improve their local sanitization processes. A site can cross-sanitize its local training

data based on remote models, using the aggregation and differencing operations.

The second application that we present focuses on application-level behavioral

modeling. In this case, AD models are used to confirm that applications conform to

their typical behavior characteristics. This goal requires a method for building be-

havioral profiles that is substantially different from the network-level cases described

before: application profiles are based on the frequency distribution of function return

values. However, the same general principles of AD model corroboration apply. We

have demonstrated that these models can be shared among a set of real software

applications as they are consistent within a set of multiple application runs, and that

they are discriminative between different applications. Based on the successful appli-

cation of the AD model exchange principles in different environments, we conjecture

that the same approach can in the future be generalized for other types of profiling

techniques as well.

CHAPTER 7. CONCLUSION 117

7.2 Result Summary

In order to support the validity of the techniques presented above, we conducted a

number of experiments, detailed in chapter 3, chapter 4, chapter 5 and chapter 6. We

have learned the following lessons:

• When our training dataset sanitization method was employed, the studied AD

sensors detected approximately 5 times more attack packets than without the

sanitization method.

• In order to study the feasibility of a fully automated deployment mechanism, we

compared the results obtained with empirically determines optimal parameters

against those computed using the self-calibration phase. Modeling traffic from

two different sources, the fully automated calibration shows a 7.08% reduction

in detection rate and a 0.06% increase in false positives, in the worst case, when

compared to the optimal empirically determined parameters.

• Without a model adaptation process, legitimate changes in the system are

flagged as anomalous by the AD sensor leading to an inflation of alerts. Over

a very large time window, our model update generation maintains a low alert

rate (1%) as opposed to a rate of 7% for a system without updates.

• Using induced model updates results both in a fast initial training phase and

a fast automatic updating phase. Updates can be triggered by a notification

system that monitors both the file system and the database. For the case of

updates induced by patches, we examined 11 security–critical patches which

verified our conjecture that effected changes are localized in relatively small

areas of the underlying AD model. We were able to summarize the data and

control flow changes necessary to update a behavioral model and propose a

patch-based model update procedure.

• Collaboration between multiple sites can alleviate the risk of training attacks,

CHAPTER 7. CONCLUSION 118

where one site includes the attack in its normality model. Our cross-sanitization

technique improved the detection rate up to 100% in the case where one site

missed the training attack, but other collaborators detected it and labeled it as

abnormal. We also showed that AD models can be shared among a set of real

software applications as they are consistent within a set of multiple application

runs, and that they are discriminative between different applications.

7.3 Future Work

In this thesis we have focused on a generalized framework for automated deployment

of accurate anomaly detection sensors. We believe that achieving this goal will enable

new applications in both the short and long terms, and also reveal a number of new

and highly promising research directions.

In the concluding remarks of each chapter, we have presented a number of short

term extensions that can be added to the methods presented in that chapter; we

briefly review some of the most important ones here. For example, the sanitization

process could potentially use more complex weighting strategies during its core voting

process. The model update approaches can benefit from a micro-model clustering

approach that minimizes the delay introduced by the sanitization technique in the

update process. A parallel implementation of the online sanitization process can

also help alleviate the computational effort for high traffic bandwidth. For induced

updates based on patches, different implementations of the model update process for

different host–based AD sensors are the logical next steps.

Looking beyond immediate improvements and refinements, we believe that one

of the key characteristics of the presented work is its agnostic approach to the AD

algorithm that is used. This makes it general and applicable to a wide range of

sensors. More importantly, it can also enable it to combine multiple sensors in a

unified framework, following the guidelines traced out in this thesis. The first step in

CHAPTER 7. CONCLUSION 119

this direction will be to characterize more sensors, from the point of view of compliance

with the interface defined in our work. We will then extend the voting process used

for data sanitization to accept input from multiple content-based sensors during the

voting process. In this thesis, we have presented self-adaptive AD methods that

leverage diversity in both time (by using individual micro-models for self-sanitization)

and space (by corroborating alerts from multiple sites). Adding a new dimension by

integrating multiple core AD techniques seem a natural direction to follow.

So far, our main focus has been on content-based anomaly detection. In the

future, we believe that a particularly promising direction is to use the experience we

have gained to develop hybrid technologies that can leverage a larger spectrum of

malware detection. We envision the use of a unified framework for multiple sensors

operating at different levels(e.g. network level, host level, etc.). The sensor selection

process should be done such that redundant sensors cannot be evaded by the same

type of attack input. While we have not yet achieved this level of integration, it is our

directional goal. Finally, an important aspect is that by correlating events triggered

by different components of a hybrid approach we can determine the intentions or

the capabilities of the attackers. Such profiles will be instrumental in developing

appropriate response strategies.

APPENDIX A. AUTOMATED AD SENSORS 120

Appendix A

Automated AD Sensors

A.1 Self-Calibration

Given a new packet in a live network stream, as well as a history of packets contained

in the current micro-model, these function compute the likelihood of seeing new con-

tent in the future. If this likelihood dips below a given threshold, the current model

is deemed to be stable and a new micro-model is started.

A.1.1 Processing a Packet

1 /∗∗

2 ∗ This func t ion proces s e s a packet from the stream to e x t r a c t

3 ∗ the in format ion needed in the c a l i b r a t i o n o f the time g ranu l a r i t y

4 ∗ f o r each micro−da t a s e t

5 ∗

6 ∗ @param packet − a StandPacket o b j e c t t ha t con ta in s a l l t he

7 ∗ header and payload in format ion f o r TCP or UDP packe t s

8 ∗ @throws IOException

9 ∗ @throws FileNotFoundExcept ion

10 ∗/

11 protected void proces sPacket (StandPacket packet) {

12 // i f t h i s i s the f i r s t packet processed in the c a l i b r a t i o n phase

APPENDIX A. AUTOMATED AD SENSORS 121

13 // prevDate=nu l l , so i t needs to be s e t to the current packet

14 // timestamp va lue

15 i f (prevDate == null) {

16 prevDate = packet . getTimestamp () ;

17 }

18

19 // increment the number o f packe t s

20 numPackets++;

21

22 // show progre s s in proces s ing packe t s

23 i f (numPackets \ 1000 == 0

24 Ut i l s . l o g g e r . l o g (Level . INFO, numPackets

25 + ” have been proce s s ed so f a r . ”) ;

26 // e x t r a c t the current date as the date o f t h i s packet

27 currDate = packet . getTimestamp () ;

28

29 // check i f t h i s i s the f i r s t packet in a micro−model and s e t the

30 // model s t a r t timestamp

31 i f (f i r s tP a c k e t) {

32 f i r s tP a c k e t = fa l se ;

33 modelStartDate = currDate ;

34 }

35

36 // check i f we reached the d e l t a d i f f e r e n c e (600 s) between

37 // timestamps and compute a new l i k e l i h o o d va lu e ; we have a

38 // b u f f e r o f U t i l s . lL imi t (10) l i k e l i h o o d va lu e s on which we

39 // compute the s t a b i l i t y

40 i f (currDate . getTime () − prevDate . getTime () >= Ut i l s . d e l t a) {

41

42 // compute the number o f common grams

43 int commonGrams = 0 ;

44 CUBloomFilter i n t e r = deltaGrams . and (allGrams , ” i n t e r ” , null) ;

45 i f (i n t e r != null)

46 commonGrams = i n t e r . getUsedSize () ;

APPENDIX A. AUTOMATED AD SENSORS 122

47

48 // compute the l i k e l i h o o d as the number o f new grams over the

49 // t o t a l number o f grams

50 double lhood = (double) (deltaGrams . getUsedSize () − commonGrams)

51 / (allGrams . getUsedSize () + deltaGrams . getUsedSize ()) ;

52

53 // cons t ruc t the array o f l i k e l i h o o d s

54 addLike l ihood (lhood) ;

55

56 // compute the s t a b i l i t y

57 s t ab l e = computeStabi l i ty () ;

58

59 // add the current d e l t a grams to a l l t he grams and c l e a r

60 // deltaGrams

61 allGrams = allGrams . or (deltaGrams , ” a l l new ” , null) ;

62 deltaGrams . r e s e t () ;

63 prevDate = null ;

64

65 } else {

66 // c o l l e c t a l l t he in format ion f o r t h i s d e l t a i n t e r v a l

67 byte [] packetData = packet . getData () ;

68

69 // add the new grams in the l a s t d e l t a i n t e r v a l

70 deltaGrams . insertNGrams (packetData , new int [] { Ut i l s . gramSize }) ;

71 }

72 }

A.1.2 Model Stability

1 /∗∗

2 ∗ This func t ion implements a l i n e a r l e a s t square approximat ion to

3 ∗ check when the content s t a b i l i z e s to dec ide the va lu e o f t ime

4 ∗ g r anu l a r i t y . I t keeps U t i l s . lL imi t (10 by d e f a u l t) po in t s to

APPENDIX A. AUTOMATED AD SENSORS 123

5 ∗ check the s t a b i l i t y .

6 ∗

7 ∗ @return t rue i f i t i s s t a b l e and f a l s e i f not

8 ∗/

9 private boolean computeStabi l i ty () {

10 i f (l L i s t . s i z e () < Ut i l s . lL imi t)

11 return fa l se ;

12

13 double sumX = 0 , sumY = 0 , sumXY = 0 , sumX2 = 0 ,

14 avg = 0 , s td = 0 , a = 0 , b = 0 ;

15

16 for (int i = 0 ; i < l L i s t . s i z e () ; i++) {

17 sumX += i + 1 ;

18 sumX2 += Math . pow(i + 1 , 2) ;

19 sumY += l L i s t . get (i) ;

20 sumXY += l L i s t . get (i) ∗ (i + 1) ;

21 }

22 i f (l L i s t . s i z e () == Ut i l s . lL imi t) {

23 avg = sumY / Ut i l s . lL imi t ;

24 for (int i = 0 ; i < l L i s t . s i z e () ; i++)

25 std += (avg − l L i s t . get (i)) ∗ (avg − l L i s t . get (i)) ;

26

27 std /= Ut i l s . lL imi t ;

28 s td = Math . s q r t (s td) ;

29 }

30 // we f i t a l i n e y=a+b∗x

31 a = (sumY ∗ sumX2 − sumX ∗ sumXY)

32 / (U t i l s . lL imi t ∗ sumX2 − sumX ∗ sumX) ;

33 b = (Ut i l s . lL imi t ∗ sumXY − sumX ∗ sumY)

34 / (U t i l s . lL imi t ∗ sumX2 − sumX ∗ sumX) ;

35

36 // when the r e g r e s s i on c o e f f i c i e n t b approaches 0 we cons ider t ha t

37 // data i s s t a b l e as long as the s t d va lu e i s a l s o smal l

38 i f (b < 0 .01 && b > −0.01 && std < 0 . 1) {

APPENDIX A. AUTOMATED AD SENSORS 124

39 U t i l s . l o g g e r . l o g (Level . INFO, ”a = ” + a + ” b = ” + b) ;

40

41 // compute the g r anu l a r i t y when the model i s s t a b l e

42 g r anu l a r i t y = (currDate . getTime () − modelStartDate . getTime ()) /

1000 ;

43 f i r s tP a c k e t = true ;

44 return true ;

45 }

46 return fa l se ;

47 }

A.2 Self-Sanitization

Here we present the main functions used in the sanitization process of chapter 3. We

note that our tool was also integrated with the Worminator [112] infrastructure in

order to exchange the abnormal models in the cross-sanitization process.

A.2.1 Process a Packet

This function processes a network packet and test it using the micro-models. Based

on the decisions of the micro-models, a voting score is computed. The first 20 percent

of data is used for calibrating the voting threshold, while the rest is used for building

the sanitized model.

1 /∗∗

2 ∗ This func t ion proces s e s a packet from the stream to e x t r a c t

3 ∗ the in format ion needed in the s a n i t i z a t i o n proces s ; the vo t ing

4 ∗ t h r e s ho l d i s determined au t oma t i c a l l y .

5 ∗ We implement the weighted vo t ing s t r a t e g y

6 ∗

7 ∗ @param packet − a StandPacket o b j e c t t ha t con ta in s a l l t he

8 ∗ header and payload in format ion f o r TCP or UDP packe t s

APPENDIX A. AUTOMATED AD SENSORS 125

9 ∗ @param numMicroDatasets − number o f micro−models t ha t are used

10 ∗ in the vo t ing proces s

11 ∗/

12 public void proces sPacket (StandPacket packet , int numMicroDatasets) {

13 // computing the abnormal vo t e s

14 double abnVote = 0 ;

15 // t o t a l number o f packe t s

16 double totalNum = 0 ;

17

18 // a model t ha t i s shared in the Worminator i n f r a s t r u c t u r e

19 Model worminatorAbnModel = null ;

20 // i f the model i s a v a i l a b l e the cross−s a n i t i z a t i o n i s app l i e d

21 boolean modelAvai lable = fa l se ;

22

23 // i f the cross−s a n i t i z a t i o n i s s e t in the con f i g u r a t i on

24 i f (U t i l s . worminatorAbnModel != null) {

25 worminatorAbnModel = Ut i l s . worminatorAbnModel ;

26 modelAvai lable = true ;

27 }

28

29 // t e s t the packet aga in s t a l l t he micro−models

30 for (int i = 0 ; i < microModels . l ength ; i++) {

31 boolean r e s u l t ;

32

33 // there are two s t r a t e g i e s f o r s t o r in g the t e s t i n g r e s u l t s

34 // i f the r e s u l t s o f the t e s t i n g aga in s t micro−models are s t ored

35 // in the model

36 i f (U t i l s . storeResultsOnModels) {

37 i f (microModels [i] . g e tResu l t (packet . packetID) == 0)

38 r e s u l t = fa l se ;

39

40 else i f (microModels [i] . g e tResu l t (packet . packetID) == 1)

41 r e s u l t = true ;

42

APPENDIX A. AUTOMATED AD SENSORS 126

43 else {

44 r e s u l t = microModels [i] . te s tData (packet . getData ()) ;

45 microModels [i] . s e tResu l t (packet . packetID , r e s u l t) ;

46 t o t a lTe s t s++;

47 }

48 } else {

49 // i f the r e s u l t s are s t ored in the saved t r a f f i c

50 i f (U t i l s . s to reResu l tsOnPackets) {

51 i f (packet . r e s u l t [microModels [i] . modelID] == 0) {

52 r e s u l t = microModels [i] . te s tData (packet . getData ()) ;

53 t o t a lTe s t s++;

54 i f (r e s u l t) {

55 packet . r e s u l t [microModels [i] . modelID] = 1 ;

56 }

57 else {

58 packet . r e s u l t [microModels [i] . modelID] = 2 ;

59 }

60 }

61 else {

62 r e s u l t = (packet . r e s u l t [microModels [i] . modelID] == 1) ;

63 }

64 }

65 else {

66 r e s u l t = microModels [i] . te s tData (packet . getData ()) ;

67 t o t a lTe s t s++;

68 }

69 }

70

71 i f (! r e s u l t) {

72 abnVote += microModels [i] . getPacketNum() ;

73 }

74

75 totalNum += microModels [i] . getPacketNum() ;

76 }

APPENDIX A. AUTOMATED AD SENSORS 127

77

78

79 // make the vo t e weighted

80 abnVote /= totalNum ;

81

82 // the f i r s t 20 perc . o f packe t s are used f o r c a l i b r a t i o n

83 i f (numMicroDatasets <= microModels . l ength ∗ 0 . 2) {

84 // s e t t i n g the vo t ing t h r e s ho l d au t oma t i c a l l y

85 for (int i = 0 ; i < th r e s ho l d s . l ength ; i++) {

86 i f (abnVote <= thr e sho l d s [i]) {

87 numPacketsTh [i]++;

88 }

89 }

90 }

91 // f o r the nex t par t we a c t u a l l y b u i l d the s an i t i z e d

92 // and the abnormal models

93 else {

94 i f (! setTh) {

95 setTh = true ;

96 th = getVotingThreshold () ;

97 }

98

99 i f ((abnVote <= th) | | Ut i l s . bypassTimeGranularity) {

100 i f (modelAvai lable) {

101 // app ly ing the cross−s a n i t i z a t i o n

102 System . out . p r i n t l n (”Test ing with worminator abnormal model”) ;

103 i f (! worminatorAbnModel . te s tData (packet . getData ())) {

104 sanModel . addData(packet . getData ()) ;

105 }

106 } else{

107 // adding the data to the s an i t i z e d model

108 sanModel . addData(packet . getData ()) ;

109 }

110 } else {

APPENDIX A. AUTOMATED AD SENSORS 128

111 // adding the data to the abnormal model

112 abnModel . addData(packet . getData ()) ;

113 }

114 }

115 }

A.2.2 Voting Threshold

1 /∗∗

2 ∗ This method generated the vo t ing t h r e s ho l d au t oma t i c a l l y .

3 ∗ I t normal izes the number o f normal packe t s generated f o r

4 ∗ each t h r e s ho l d . I t r e t u rns max(y−x) as the i n t e r e s t po in t .

5 ∗

6 ∗ @return the vo t ing t h r e s ho l d

7 ∗/

8 public double getVotingThreshold () {

9 double norm = 0 ;

10 double max = 0 ;

11 int maxPos = 0 ;

12 int s i z e = numPacketsTh . l ength − 1 ;

13

14 // normal ize the numPacketsTh

15 norm = numPacketsTh [s i z e − 1] − numPacketsTh [0] ;

16

17 // compute the maximum (y [k]−y [0]) /norm−th [k]

18 for (int k = 0 ; k < th r e s ho l d s . l ength ; k++) {

19 System . out . p r i n t l n (”Num packets : ”+numPacketsTh [k]) ;

20 double aux = (double) ((numPacketsTh [k] − numPacketsTh [0]) / norm)

21 − th r e s ho l d s [k] ;

22 i f (aux > max) {

23 max = aux ;

24 maxPos = k ;

25 }

APPENDIX A. AUTOMATED AD SENSORS 129

26 }

27 U t i l s . l o g g e r . l o g (Level . INFO, ”THE VOTING THRESHOLD IS : ”

28 + th r e s ho l d s [maxPos]) ;

29 return th r e s ho l d s [maxPos] ;

30 }

BIBLIOGRAPHY 130

Bibliography

[1] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos, and

A. D. Keromytis. Detecting Targeted Attacks Using Shadow Honeypots. In

Proceedings of the 14th USENIX Security Symposium, August 2005.

[2] Apache mod rewrite Buffer Overflow Vulnerability. http://www.

securityfocus.com/archive/1/archive/1/441487/100/0/threaded.

[3] Daniel Barbara, Julia Couto, Sushil Jajodia, Leonard Popyack, and Ningning

Wu. Adam: Detecting intrusions by data mining. In Proceedings of the IEEE

Workshop on Information Assurance and Security, pages 11–16, 2001.

[4] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and J.D. Ty-

gar. Can Machine Learning Be Secure? In Proceedings of the ACM Symposium

on Information, Computer and Communications Security (CCS), 2006.

[5] Zafer Barutcuoglu and Ethem Alpaydin. A comparison of model aggregation

methods for regression. In Proceedings of the International Conference on Ar-

tificial Neural Networks (ICANN). Springer, 2003.

[6] Burton H. Bloom. Space/time trade-offs in Hash Coding with Allowable Errors.

Communications of the ACM, 13(7):422–426, 1970.

[7] Damiano Bolzoni, Sandro Etalle, and Pieter Hartel. Panacea: Automating

Attack Classification for Anomaly-based Network Intrusion Detection Systems.

BIBLIOGRAPHY 131

In Proceedings of the 12th International Symposium On Recent Advances In

Intrusion Detection (RAID), 2009.

[8] Leo Breiman. Bagging Predictors. Machine Learning, 24(2):123–140, 1996.

[9] Danilo Bruschi, Lorenzo Cavallaro, and Andrea Lanzi. Static Analysis on x86

Executables for Preventing Automatic Mimicry Attacks. In Proceedings of the

Conference on Detection of Intrusions and Malware, and Vulnerability Assess-

ment (DIMVA), pages 213–230, 2007.

[10] Philip K. Chan and Salvatore J. Stolfo. Experiments in Multistrategy Learn-

ing by Meta-Learning. In Proceedings of the Second International Conference

on Information and Knowledge Management, pages 314–323, Washington, DC,

1993.

[11] Suresh N. Chari and Pau-Chen Cheng. BlueBoX: A Policy–driven, Host–Based

Intrusion Detection System. In Proceedings of the 9th Symposium on Network

and Distributed Systems Security (NDSS), 2002.

[12] Jedidah R. Crandall, Zhendong Su, S. Felix Wu, and Frederic T. Chong. On

Deriving Unknown Vulnerabilities from Zero-Day Polymorphic and Metamor-

phic Worm Exploits. In Proceedings of the ACM Conference on Computer and

Communications Security (CCS), Alexandria, VA, 2005.

[13] Gabriela Cretu, Janak J. Parekh, Ke Wang, and Salvatore J. Stolfo. Intrusion

and Anomaly Detection Model Exchange for Mobile Ad-Hoc Networks. In Pro-

ceedings of the IEEE Consumer Communications and Networking Conference

(CCNC), Las Vegas, NV, 2006.

[14] Gabriela F. Cretu, Angelos Stavrou, Michael E. Locasto, and Salvatore J. Stolfo.

Extended Abstract: Online Training and Sanitization of AD Systems. In Pro-

ceedings of the NIPS Workshop on Machine Learning in Adversarial Environ-

ments for Computer Security, 2007.

BIBLIOGRAPHY 132

[15] Gabriela F. Cretu, Angelos Stavrou, Michael E. Locasto, Salvatore J. Stolfo,

and Angelos D. Keromytis. Casting out Demons: Sanitizing Training Data

for Anomaly Sensors. In Proceedings of the IEEE Symposium on Security and

Privacy, 2008.

[16] Gabriela F. Cretu, Angelos Stavrou, Salvatore J. Stolfo, and Angelos D.

Keromytis. Data Sanitization: Improving the Forensic Utility of Anomaly De-

tection Systems. In Proceedings of the Workshop on Hot Topics in System

Dependability (HotDep), 2007.

[17] Gabriela F. Cretu-Ciocarlie, Angelos Stavrou, , Michael E. Locasto, and Salva-

tore J. Stolfo. Adaptive Anomaly Detection via Self-Calibration and Dynamic

Updating. In Proceedings of the 12th International Symposium On Recent Ad-

vances In Intrusion Detection (RAID), 2009.

[18] CVS Heap Overflow Vulnerability. http://www.us-cert.gov/cas/

techalerts/TA04-147A.html.

[19] David Dagon, Cliff Zou, and Wenke Lee. Modeling Botnet Propagation Using

Time Zones. In Proceedings of the 13thNetwork and Distributed System Security

Symposium (NDSS), 2006.

[20] Sanjoy Dasgupta, Daniel Hsu, and Claire Monteleoni. A general agnostic active

learning algorithm. In Proceedings of the Twenty-First Annual Conference on

Neural Information Processing Systems (NIPS), 2007.

[21] Theo Detristan, Tyll Ulenspiegel, Yann Malcom, and Mynheer Superbus von

Underduk. Polymorphic Shellcode Engine Using Spectrum Analysis. Phrack,

11(61-9), 2003.

[22] Thomas G. Dietterich. Ensemble Methods in Machine Learning. Lecture Notes

in Computer Science, 1857:1–15, 2000.

BIBLIOGRAPHY 133

[23] Pedro Domingos. Metacost: A general method for making classifiers cost-

sensitive. In Proceedings of the ACM Conference on Knowledge Discovery and

Data Mining (KDD), pages 155–164, 1999.

[24] Henry Hanping Feng, Oleg M. Kolesnikov, Prahlad Fogla, Wenke Lee, and

Weibo Gong. Anomaly detection using call stack information. In Proceedings

of the IEEE Symposium on Security and Privacy, 2003.

[25] Prahlad Fogla and Wenke Lee. Evading Network Anomaly Detection Systems:

Formal Reasoning and Practical Techniques. In Proceedings of the 13th ACM

Conference on Computer and Communications Security (CCS), pages 59–68,

2006.

[26] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A.

Longstaff. A Sense of Self for Unix Processes. In Proceedings of the IEEE

Symposium on Security and Privacy, 1996.

[27] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of

on-line learning and an application to boosting. In Proceedings of the European

Conference on Computational Learning Theory, pages 23–37, 1995.

[28] Vanessa Frias-Martinez. Behavior-Based Admission and Access Control for Net-

work Security. PhD thesis, Columbia University, 2008.

[29] Vanessa Frias-Martinez, Salvatore J. Stolfo, and Angelos D. Keromytis.

Behavior-based network access control: A proof-of-concept. In Proceedings of

the Information Security Conference (ISC), pages 175–190, 2008.

[30] Vanessa Frias-Martinez, Salvatore J. Stolfo, and AngelosD. Keromytis.

Behavior-profile clustering for false alert reduction in anomaly detection sen-

sors. In Proceedings of the Computer Security Applications Conference (AC-

SAC), pages 367–376, Dec. 2008.

BIBLIOGRAPHY 134

[31] J. Gama, P. Medas, G. Castillo, and P. P. Rodrigues. Learning with drift detec-

tion. In Proceedings of the XVII Brazilian Symposium on Artificial Intelligence,

2004.

[32] Debin Gao, Michael K. Reiter, and Dawn Song. Gray-Box Extraction of Exe-

cution Graphs for Anomaly Detection. In Proceedings of the ACM Conference

on Computer and Communications Security (CCS), 2004.

[33] Debin Gao, Michael K. Reiter, and Dawn Song. Behavioral Distance for Intru-

sion Detection. In Proceedings of the 8th International Symposium on Recent

Advances in Intrusion Detection (RAID), pages 63–81, September 2005.

[34] Carrie Gates and Carol Taylor. Challenging the anomaly detection paradigm: a

provocative discussion. In Proceedings of the New Security Paradigms Workshop

(NSPW), 2006.

[35] ghttpd Log() Function Buffer Overflow Vulnerability. http://www.

securityfocus.com/bid/5960.

[36] Jonathon T. Giffin, David Dagon, Somesh Jha, Wenke Lee, and Barton P.

Miller. Environment-Sensitive Intrusion Detection. In Proceedings of the 8th

International Symposium on Recent Advances in Intrusion Detection (RAID),

September 2005.

[37] Kelly Jackson Higgins. AV Vendor Adopts ’Herd’ Intelligence, 2007. http:

//www.darkreading.com/document.asp?doc id=140292.

[38] James Hoagland. SPADE, Silicon Defense, 2000. http://www.

silicondefense.com/software/spice.

[39] S. A. Hofmeyr, Anil Somayaji, and S. Forrest. Intrusion Detection System Using

Sequences of System Calls. Journal of Computer Security, 6(3):151–180, 1998.

BIBLIOGRAPHY 135

[40] Javits and Valdes. The NIDES statistical component: Description and justifi-

cation. 1993.

[41] Udo Kelter, Jrgen Wehren, and Jrg Niere. A generic difference algorithm for

uml models. In Peter Liggesmeyer, Klaus Pohl, and Michael Goedicke, editors,

Software Engineering, volume 64 of LNI, pages 105–116. GI, 2005.

[42] M. Kinateder and K. Rothermel. Architecture and Algorithms for a Distributed

Reputation System. In Proceedings of the First International Conference on

Trust Management, 2003.

[43] R. Klinkenberg and T Joachims. Detecting concept drift with support vector

machines. In Proceedings of the 17th International Conference on Machine

Learning (ICML), 2000.

[44] R. Klinkenberg and S Ruping. Concept drift and the importance of examples.

In Franke, J., Nakhaeizadeh, G., Renz, I., eds.: Text Mining Theoretical Aspects

and Applications, 2003.

[45] Ralf Klinkenberg. Meta-learning, model selection, and example selection in

machine learning domains with concept drift, 2005.

[46] Known Vulnerabilities in Mozilla Products. http://www.mozilla.org/

projects/security/known-vulnerabilities.

[47] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson, and Gio-

vanni Vigna. Automating Mimicry Attacks Using Static Binary Analysis. In

Proceedings of the 14th Usenix Security Symposium, 2005.

[48] Christopher Kruegel, Thomas Toth, and Clemens Kerer. Decentralized event

correlation for intrusion detection. In Proceedings of the International Confer-

ence on Information Security and Cryptology (ICISC), pages 114–131, 2001.

BIBLIOGRAPHY 136

[49] Christopher Kruegel, Thomas Toth, and Engin Kirda. Service Specific Anomaly

Detection for Network Intrusion Detection. In Proceedings of the Symposium

on Applied Computing (SAC), Madrid, Spain, 2002.

[50] Christopher Kruegel and Giovanni Vigna. Anomaly Detection of Web-based At-

tacks. In Proceedings of the ACM Conference on Computer and Communication

Security (CCS), Washington, D.C., 2003.

[51] Christopher Kruegel, Giovanni Vigna, and William Robertson. A multi-model

approach to the detection of web-based attacks. International Journal of Com-

puter and Telecommunications Networking, 48(5):717–738, 2005.

[52] Terran Lane and Carla E. Broadley. Approaches to online learning and concept

drift for user identification in computer security. In Proceedings of the 4th

International Conference on Knowledge Discovery and Data Mining (KDD),

1998.

[53] Peng Li, Debin Gao, and Michael K. Reiter. Automatically Adapting a Trained

Anomaly Detector to Software Patches. In Proceedings of the 12th International

Symposium On Recent Advances In Intrusion Detection (RAID), 2009.

[54] Richard P. Lippmann and Joshua Haines. Analysis and Results of the 1999

DARPA Off-Line Intrusion Detection Evaluation. In Proceedings of the Recent

Advances in Intrusion Detection (RAID), pages 162–182, 2000.

[55] Local DoS Attack in Linux Kernel. http://www.sfu.ca/∼siegert/

linux-security/msg00047.html.

[56] Michael E. Locasto, Gabriela F. Cretu, Shlomo Hershkop, and Angelos Stavrou.

Post-Patch Retraining for Host-Based Anomaly Detection. In Columbia Uni-

versity Computer Science Department Technical Report, CUCS 035-07, 2007.

BIBLIOGRAPHY 137

[57] Michael E. Locasto, Janak J. Parekh, Angelos D. Keromytis, and Salvatore J.

Stolfo. Towards Collaborative Security and P2P Intrusion Detection. In Pro-

ceedings of the IEEE Information Assurance Workshop, West Point, NY, 2005.

[58] Michael E. Locasto, Angelos Stavrou, Gabriela F. Cretu, Angelos D. Keromytis,

and Salvatore J. Stolfo. Return value predictability profiles for self—healing.

In Proceedings of the 3rd International Workshop on Security (IWSec), pages

152–166, Berlin, Heidelberg, 2008. Springer-Verlag.

[59] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-

off Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:

Building Customized Program Analysis Tools with Dynamic Instrumentation.

In Proceedings of Programming Language Design and Implementation (PLDI),

June 2005.

[60] Federico Maggi, William Robertson, Christopher Kruegel, and Giovanni Vi-

gna. Protecting a Moving Target: Addressing Web Application Concept Drift.

In Proceedings of the 12th International Symposium On Recent Advances In

Intrusion Detection (RAID), 2009.

[61] Matthew Mahoney, , Matthew V. Mahoney, and Philip K. Chan. Phad: Packet

header anomaly detection for identifying hostile network traffic. Technical re-

port, 2001.

[62] Matthew V. Mahoney. Network traffic anomaly detection based on packet bytes.

In Proceedings of the 2003 ACM Symposium on Applied Computing, pages 346–

350, New York, NY, USA, 2003. ACM.

[63] Rohan McGovern. Inotify-tools. http://inotify-tools.sourceforge.net/.

[64] John McHugh. Testing Intrusion Detection Systems: A Critique of the 1998

and 1999 DARPA Intrusion Detection System Evaluations as Performed by

BIBLIOGRAPHY 138

Lincoln Laboratory. ACM Transactions on Information and System Security

(TISSEC), 3(4):262–291, 2000.

[65] Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study of the

reliability of unix utilities. Communications of the ACM, 33(12):32–44, 1990.

[66] C. Monteleoni and M. Kaariainen. Practical online active learning for classifica-

tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1–8, June 2007.

[67] David Moore and Colleen Shannon. The Spread of the Code Red Worm (CRv2).

http://www.caida.org/analysis/security/code-red/coderedv2 analysis.xml.

[68] Henry Muccini. Using model differencing for architecture-level regression test-

ing. In Proceedings of the 33rd EUROMICRO Conference on Software Engi-

neering and Advanced Applications, pages 59–66, Washington, DC, USA, 2007.

IEEE Computer Society.

[69] Multiple Vulnerabilities in libpng. http://www.us-cert.gov/cas/

techalerts/TA04-217A.html.

[70] D. Mutz, F. Valeur, C. Kruegel, and G. Vigna. Anomalous System Call Detec-

tion. In Proceedings of the 8th International Symposium on Recent Advances in

Intrusion Detection (RAID), September 2005.

[71] MySQL 5.0 Reference Manual: Using Triggers. http://dev.mysql.com/doc/

refman/5.0/en/triggers.html.

[72] James Newsome, Brad Karp, and Dawn Song. Polygraph: Automatically Gen-

erating Signatures for Polymorphic Worms. In Proceedings of the IEEE Security

and Privacy, Oakland, CA, 2005.

BIBLIOGRAPHY 139

[73] Peng Ning, Yun Cui, and Douglas S. Reeves. Constructing attack scenarios

through correlation of intrusion alerts. In Proceedings of the 9th ACM Confer-

ence on Computer and Communications Security (CCS), pages 245–254, New

York, NY, USA, 2002. ACM.

[74] Null httpd Remote Heap Overflow Vulnerability. http://www.securityfocus.

com/bid/5774.

[75] Janak J. Parekh. Privacy-Preserving Distributed Event Corroboration. PhD

thesis, Columbia University, 2007.

[76] Bambang Parmanto, Munro Paul W., and Howard R. Doyle. Improving Com-

mittee Diagnosis with Resampling Techniques. Advances in Neural Information

Processing Systems, 8:882–888, 1996.

[77] Emanuel Parzen. On estimation of a probability density function and mode.

The Annals of Mathematical Statistics, 33(3):1065–1076, 1962.

[78] Vern Paxson. Bro: A system for detecting network intruders in real-time. In

Computer Networks, pages 2435–2463, 1998.

[79] Tadeusz Pietraszek. Using Adaptive Alert Classification to Reduce False Pos-

itives in Intrusion Detection. In Proceedings of the Symposium on Recent Ad-

vances in Intrusion Detection (RAID), September 2004.

[80] Phillip A. Porras and Peter G. Neumann. EMERALD: event monitoring en-

abling responses to anomalous live disturbances. In Proceedings of the National

Information Systems Security Conference, oct 1997.

[81] Niels Provos. Improving Host Security with System Call Policies. In Proceedings

of the 12th USENIX Security Symposium, pages 207–225, August 2003.

[82] Remote Code Injection Vulnerability in fetchmail. http://fetchmail.

berlios.de/fetchmail-SA-2005-01.txt.

BIBLIOGRAPHY 140

[83] James C. Reynolds, James Just, Larry Clough, and Ryan Maglich. On-line

intrusion detection and attack prevention using diversity, generate-and-test,

and generalization. In Proceedings of the 36th Annual Hawaii International

Conference on System Sciences (HICSS’03) - Track 9, page 335.2, Washington,

DC, USA, 2003. IEEE Computer Society.

[84] Jamie Riden, Ryan McGeehan, Brian Engert, and Michael Mueter. Know your

Enemy: Web Application Threats, 2008. http://www.honeynet.org/book/

export/html/1.

[85] Konrad Rieck and Pavel Laskov. Language models for detection of unknown

attacks in network traffic. Journal in Computer Virology, 2(4):243–256, 2007.

[86] Haakon Ringberg, Augustin Soule, Jennifer Rexford, and Christophe Diot. Sen-

sitivity of pca for traffic anomaly detection. In Proceedings of the ACM SIG-

METRICS International Conference on Measurement and Modeling of Com-

puter Systems, pages 109–120, New York, NY, USA, 2007. ACM.

[87] Dan Roth and Kevin Small. Margin-based active learning for structured output

spaces. In Proceedings of the 17th European Conference on Machine Learning

(ECML), 2006.

[88] Samba Security Releases. http://samba.org/samba/samba/history/

security.html.

[89] Vitaly Shmatikov and Ming-Hsiu Wang. Security against probe-response at-

tacks in collaborative intrusion detection. In Proceedings of the 2007 Workshop

on Large Scale Attack Defense (LSAD), pages 129–136, New York, NY, USA,

2007. ACM.

[90] Stelios Sidiroglou, Oren Laadan, Carlos Perez, Nicolas Viennot, Jason Nieh,

and Angelos D. Keromytis. Assure: automatic software self-healing using res-

cue points. In Proceeding of the 14th international conference on Architectural

BIBLIOGRAPHY 141

support for programming languages and operating systems (ASPLOS), pages

37–48, New York, NY, USA, 2009. ACM.

[91] Stelios Sidiroglou, Michael E. Locasto, Stephen W. Boyd, and Angelos D.

Keromytis. Building a Reactive Immune System for Software Services. In

Proceedings of the USENIX Technical Conference, June 2005.

[92] Anil Somayaji and Stephanie Forrest. Automated Response Using System-Call

Delays. In Proceedings of the 9th USENIX Security Symposium, August 2000.

[93] Yigbo Song, Michael E. Locasto, Angelos Stavrou, A. D. Keromytis, and Sal-

vatore J. Stolfo. On the infeasibility of Modeling Polymorphic Shellcode for

Signature Detection. In Columbia University Computer Science Department

Technical Report, CUCS 007-07, 2007.

[94] Yingbo Song, Angelos D. Keromytis, and Salvatore J. Stolfo. Spectrogram: A

Mixture-of-Markov-Chains Model for Anomaly Detection in Web Traffic. In

Proceedings of the 16th Annual Network and Distributed System Security Sym-

posium (NDSS), 2009.

[95] Stuart Staniford-Chen, Steven Cheung, R. Crawford, and M. Dilger. GrIDS - A

Graph Based Intrusion Detection System for Large Networks. In Proceedings of

the National Information Computer Security Conference, Baltimore, MD, 1996.

[96] Angelos Stavrou, Gabriela Cretu-Ciocarlie, Michael Locasto, and Salvatore

Stolfo. Keep Your Friends Close: The Necessity for Updating an Anomaly

Sensor with Legitimate Environment Changes. To appear in Proceedings of the

2nd Workshop on Security and Artificial Intelligence (AISec), 2009.

[97] Salvatore Stolfo, Wei Fan, Wenke Lee, Andreas Prodromidis, and Phil Chan.

Cost-based Modeling for Fraud and Intrusion Detection: Results from the JAM

Project. In Proceedings of the DARPA Information Survivability Conference

and Exposition (DISCEX), 2000.

BIBLIOGRAPHY 142

[98] Salvatore J. Stolfo, Frank Apap, Eleazar Eskin, Katherine Heller, Shlomo Her-

shkop, Andrew Honig, and Krysta Svore. A Comparative Evaluation of Two

Algorithms for Windows Registry Anomaly Detection. Journal of Computer

Security, 13(4), 2005.

[99] Salvatore J. Stolfo, Shlomo Hershkop, Chia-Wei Hu, Wei-Jen Li, Olivier

Nimeskern, and Ke Wang. Behavior-based modeling and its application to

email analysis. ACM Transactions on Internet Technology (TOIT), 6(2):187–

221, 2006.

[100] STunnel Client Negotiation Protocol Format String Vulnerability. http://www.

securityfocus.com/bid/3748.

[101] Kymie M.C. Tan and Roy A. Maxion. Why 6? Defining the Operational Limits

of stide, an Anomaly-Based Intrusion Detector. In Proceedings of the IEEE

Symposium on Security and Privacy, pages 188–201, May 2002.

[102] Kai Ming Ting and Ian H. Witten. Stacked generalizations: When does it work?

In Proceedings International Joint Conference on Artificial Intelligence, pages

866–873, 1997.

[103] Johannes Ullrich. DShield home page, 2005. http://www.dshield.org.

[104] Giovanni Vigna and Richard A. Kemmerer. Netstat: A network-based intrusion

detection approach. Journal of Computer Security, 7:37–71, 1998.

[105] W3C. HTTP Status Codes, 1992. http://http://www.w3.org/Protocols/

HTTP/HTRESP.html.

[106] David Wagner and Drew Dean. Intrusion Detection via Static Analysis. In

Proceedings of the IEEE Security and Privacy, Oakland, CA, 2001.

BIBLIOGRAPHY 143

[107] David Wagner and Paolo Soto. Mimicry Attacks on Host-Based Intrusion De-

tection Systems. In Proceedings of the ACM Conference on Computer and

Communication Security (CCS), 2002.

[108] Ke Wang, Gabriela Cretu, and Salvatore J. Stolfo. Anomalous Payload-based

Worm Detection and Signature Generation. In Proceedings of the Symposium

on Recent Advances in Intrusion Detection (RAID), Seattle, WA, 2005.

[109] Ke Wang, Janak J. Parekh, and Salvatore J. Stolfo. Anagram: A Content

Anomaly Detector Resistant to Mimicry Attack. In Proceedings of the Sympo-

sium on Recent Advances in Intrusion Detection (RAID), September 2006.

[110] Ke Wang and Salvatore J. Stolfo. Anomalous Payload-based Network Intrusion

Detection. In Proceedings of the Symposium on Recent Advances in Intrusion

Detection (RAID), September 2004.

[111] Daniel Wolpert. Stacked Generalization. Neural Networks, 5:241–259, 1992.

[112] Worminator. http://worminator.cs.columbia.edu/public/index.jsp.

[113] Dit-Yan Yeung and Calvin Chow. Parzen-window network intrusion detectors.

In Proceedings of the Sixteenth International Conference on Pattern Recogni-

tion, pages 385–388, 2002.

